精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

基于DeepSeek推理的文本聚類

譯文 精選
人工智能
本文將探索大型語言模型(LLM)中的推理領域,并介紹DeepSeek這款優秀工具,它能幫助人們解釋推論結果,構建能讓終端用戶更加信賴的機器學習系統。

譯者 | 李睿

審校 | 重樓

開發人員需要開發和理解一種新的文本聚類方法,并使用DeepSeek推理模型解釋推理結果。

本文將探索大型語言模型(LLM)中的推理領域,并介紹DeepSeek這款優秀工具,它能幫助人們解釋推論結果,構建能讓終端用戶更加信賴的機器學習系統。

在默認情況下,機器學習模型是一種黑盒,不會為決策提供開箱即用的解釋(XAI)。本文介紹如何使用DeepSeek模型,并嘗試將解釋或推理能力添加到機器學習世界中。

方法

首先構建自定義嵌入和嵌入函數來創建向量數據存儲,并使用DeepSeek模型來執行推理。

以下是展示整個流程的一個簡單的流程圖。

數據

(1)選擇一個新聞文章數據集來識別新文章的類別。該數據集可在Kaggle網站上下載。

(2)從數據集中,使用short_description進行向量嵌入,并使用類別特征為每篇文章分配適當的標簽。

(3)數據集相當干凈,不需要對其進行預處理。

(4)使用pandas庫加載數據集,并使用scikit-learn將其拆分為訓練和測試數據集。

1 import pandas as pd
2
3 df = pd.read_json('./News_Category_Dataset_v3.json',lines=True)
4
5 from sklearn.model_selection import train_test_split
6 # Separate features (X) and target (y)
7 X = df.drop('category', axis=1)
8 y = df['category']
9
10 # Split data into training and testing sets
11 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
12
13 train_df = pd.concat([X_train, y_train], axis=1)
14 test_df = pd.concat([X_test, y_test], axis=1)

生成文本嵌入

使用以下庫進行文本嵌入:

  • langchain—用于創建示例提示和語義相似性選擇器。
  • langchain_chroma—用于創建嵌入并將其存儲在數據存儲中。
1 from chromadb import Documents, EmbeddingFunction, Embeddings
2
3 from langchain_chroma import Chroma
4 from langchain_core.example_selectors import SemanticSimilarityExampleSelector
5 from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate

接下來,將構建自定義嵌入和嵌入函數。這些自定義函數將允許查詢部署在本地或遠程實例上的模型。

閱讀器可以為部署在遠程實例上的實例合并必要的安全機制(HTTPS、數據加密等),并調用REST端點來檢索模型嵌入。

1 class MyEmbeddings(Embeddings):
2
3 def __init__(self):
4 # Server address and port (replace with your actual values)
5 self.url = ""
6 # Request headers
7 self.headers = {
8 "Content-Type": "application/json"
9 }
10
11 self.data = {
12 # Use any text embedding model of your choice
13 "model": "text-embedding-nomic-embed-text-v1.5",
14 "input": None,
15 "encoding_format": "float"
16 }
17
18 def embed_documents(self, texts):
19 embeddings = []
20 for text in texts:
21 embeddings.append(self.embed_query(text))
22 return embeddings
23
24 def embed_query(self, input):
25 self.data['input'] = input
26 with requests.post(self.url, headers=self.headers, data=json.dumps(self.data)) as response:
27 res = response.text
28 yaml_object = yaml.safe_load(res)
29 embeddings = yaml_object['data'][0]['embedding']
30 return embeddings
31
32
33
34 class MyEmbeddingFunction(EmbeddingFunction):
35
36 def __call__(self, input: Documents) -> Embeddings:
37 return MyEmbeddings()

將定義一個簡單的函數,它將為新聞文章創建一個語義相似性選擇器。選擇器將用于使用訓練數據集創建向量嵌入。

1 def create_semantic_similarity_selector(train_df):
2
3 example_prompt = PromptTemplate(
4 input_variables=["input", "output"],
5 template="Input: {input}\nOutput: {output}",
6 )
7
8 # Examples of a pretend task of creating antonyms.
9 examples = []
10
11 for row in train_df.iterrows():
12 example = {}
13 example['input'] = row[1]['short_description']
14 example['output'] = row[1]['category']
15 examples.append(example)
16
17 semantic_similarity_selector = SemanticSimilarityExampleSelector.from_examples(
18 # The list of examples available to select from.
19 examples,
20 # The embedding class used to produce embeddings which are used to measure semantic similarity.
21 MyEmbeddings(),
22 # The VectorStore class that is used to store the embeddings and do a similarity search over.
23 Chroma,
24 # The number of examples to produce.
25 k=1,
26 ) 
27
28 return semantic_similarity_selector

調用上面的函數來生成新聞文章的嵌入。需要注意的是,訓練過程可能很耗時,可以將其并行化以使其更快運行。

1 semantic_similarity_selector = create_semantic_similarity_selector(train_df)

色度向量數據存儲用于存儲各種新聞文章及其相關標簽的向量表示。然后使用數據存儲中的嵌入來執行與測試數據集中文章的語義相似性,并檢查該方法的準確性。

將調用DeepSeek REST端點,并將從語義相似性選擇器接收到的響應和實際結果傳遞給測試數據集。隨后,將創建一個包含DeepSeek模型進行推理所需信息的上下文。

1 def explain_model_result(text, model_answer, actual_answer):
2 # REST end point for deepseek model.
3 url = ""
4 
5 # Request headers
6 headers = {
7 "Content-Type": "application/json"
8 }
9
10 promptJson = {
11 "question": 'Using the text, can you explain why the model answer and actual answer match or do not match ?',
12 "model_answer": model_answer,
13 "actual_answer": actual_answer,
14 "context": text,
15 }
16 prompt = json.dumps(promptJson)
17
18 # Request data (replace with your prompt)
19 data = {
20 "messages": [{"role": "user", "content": prompt}],
21 "temperature": 0.7,
22 "stream": True
23 }
24 captured_explanation = ""
25 with requests.post(url, headers=headers, data=json.dumps(data), stream=True) as response:
26 if response.status_code == 200:
27 for chunk in response.iter_content(chunk_size=None):
28 if chunk:
29 # Attempt to decode the chunk as UTF-8
30 decoded_chunk = chunk.decode('utf-8') 
31 # Process the chunk as a json or yaml to extract the explanation and concat it with captured_explanation object.
32 captured_explanation += yaml.safe_load(decoded_chunk)['data']['choices'][0]['delta']['content']
33 else:
34 print(f"Request failed with status code {response.status_code}")
35
36 return captured_explanation

以下解析測試數據集,并從DeepSeek模型中獲取解釋。

1 results_df = pd.DataFrame()
2 results_df['input'] = None
3 results_df['model_answer'] = None
4 results_df['actual_answer'] = None
5 results_df['explanation'] = None
6 for row in test_df.iterrows():
7 example = {}
8 example['input'] = row[1]['short_description']
9 model_result_category = semantic_similarity_selector.select_examples(example)
10 example['explanation'] = explain_model_result(example['input'],model_result_category[0]['output'],row[1]['category'])
11 example['model_answer'] = model_result_category[0]['output']
12 example['input'] = row[1]['category']
13 results_df.loc[len(results_df)] = example

結果

以下將分享測試數據集中一些場景的結果。

第一個例子是當從語義相似性中捕獲的答案與測試數據集中的實際答案不匹配時。這種洞察力使人們能夠了解模型在做出預測時是否合理。think標簽提供了DeepSeek模型的初始思維過程,以理解問題陳述,然后為最終用戶整理答案。

在第一個例子中,DeepSeek可以解釋為什么模型得到了錯誤的答案。該模型只考慮句子中的旅游(TRAVEL)方面,而沒有考慮娛樂(ENTERTAINMENT)方面。這意味著嵌入模型需要更多的娛樂示例進行訓練。

1 <think>
2
3 Okay, so I'm trying to figure out why the model answer is "TRAVEL" and the actual answer is "ENTERTAINMENT." The context given is about going to Central Park and the Delacorte Theater to see Shakespeare under the night sky, with rain expected.
4
5 First, I need to understand what each term refers to. TRAVEL relates to visiting places, moving around, or tourism in general. ENTERTAINMENT is more about enjoyable activities, like theater, concerts, movies, etc., that provide pleasure.
6
7 Looking at the context: the person went to Central Park, which is a place they traveled to. Then they went to the Delacorte Theater for a Shakespeare performance. So, the main activities are both TRAVEL and ENTERTAINMENT because they're going out, seeing a play.
8
9 But why would there be a mismatch between model and actual answers? Maybe the model didn't consider that travel can also include attending theater or other performances as part of the entertainment aspect. So the actual answer is broader, including both aspects, while the model focuses only on TRAVEL.
10
11 Alternatively, perhaps the context doesn't emphasize one over the other. The key points are moving to a place (TRAVEL) and attending an event for enjoyment (ENTERTAINMENT). Depending on the focus, either could be considered the main answer, but typically, when someone goes somewhere to attend an event, both travel and entertainment elements come into play.
12
13 So, the model answer might have only picked TRAVEL, not considering ENTERTAINMENT. The actual answer includes both aspects, hence the mismatch.
14
15 </think>
16
17 The discrepancy between the model answer "TRAVEL" and the actual answer "ENTERTAINMENT" arises from the context provided. While travel is indeed part of the narrative—visiting Central Park—the primary focus is on attending a theater performance, which falls under entertainment. The actual answer captures both elements: moving to a place (travel) and engaging in an enjoyable event (entertainment). Thus, the model may have overlooked the entertainment aspect, considering only travel, whereas the actual response encompasses both activities.
18
19 **Answer:** 
20
21
21 The model answer "TRAVEL" focuses on visiting places, while the actual answer "ENTERTAINMENT" includes attending a theater performance. The context highlights both elements, leading to the mismatch in answers.

需要考慮模型的答案和實際答案不匹配的場景。然而,該模型在預測方面是合理的。

在第二個例子中,發生在法國的持械搶劫是一種犯罪(CRIME),因此將用戶文章標記為犯罪的模型不一定是錯誤的。DeepSeek的推理能夠為結果提供合理的理由。

1 <think>
2
3 Okay, so I'm trying to figure out why the model answer is "CRIME" and the actual answer is "WORLD NEWS" given the context: "French police recovered the merchandise stolen in an armed robbery on Wednesday." 
4
5 First, I need to understand what each part of this question is asking. The user wants me to explain why these two answers match or don't match based on the provided text. So, maybe I should start by analyzing the context and seeing how it relates to both CRIME and WORLD NEWS.
6
7 Looking at the context: It's about French police recovering stolen merchandise from an armed robbery. An armed robbery is definitely a crime, so that makes sense why "CRIME" is an answer. The model answer being CRIME aligns with the event described because it's a criminal act—a robbery.
8
9 Now, why is WORLD NEWS also an answer? Well, if I think about news in general, events like this are newsworthy. So perhaps the actual answer is considering that this incident is part of world news because it involves police action and theft, which can be significant enough to be reported internationally.
10
11 But wait, does the context specify whether it's considered world news or not? It just mentions French police recovering stolen goods in an armed robbery on Wednesday. Without more details about the scale or international implications, I'm not sure if it's explicitly world news. Maybe WORLD NEWS is a broader category that includes such events as part of their reporting.
12
13 So, why do they match and why don't they? They both are relevant because CRIME is directly related to the event, while WORLD NEWS is considering the newsworthiness of the event. But perhaps the model answer is more focused on the specific event being a crime, whereas WORLD NEWS is taking a broader view of news events.
14
15 I'm also thinking about how each answer approaches the context differently. The model answer is zeroing in on the type of event (crime), while the actual answer is considering it as a newsworthy event that might be reported in world news sections or channels.
16
17 So, to sum up, both answers are relevant but approach the context from different angles—Crime specifically relates to the event's nature, whereas WORLD NEWS broadens it into the realm of news reporting.
18
19 </think>
20
21 The model answer "CRIME" and the actual answer "WORLD NEWS" both address the provided context, but they do so from different perspectives. 
22
23 **CRIME**: The context explicitly describes an armed robbery, which is a criminal act. Therefore, "CRIME" directly relates to the nature of the event.
24
25 **WORLD NEWS**: While the event is indeed newsworthy, the term "WORLD NEWS" broadens the scope beyond the specific details, considering it as part of international or general news reporting.
26
27 In essence, both answers are relevant but focus on different aspects: "CRIME" highlights the event's nature as a criminal act, while "WORLD NEWS" recognizes its potential newsworthiness.

當模型和實際答案匹配時,將考慮推理。

匹配結果背后的推理增強了人們的信任,并建立了對模型預測的信心。

1 <think>
2
3 Okay, so I'm trying to understand why the model answer and the actual answer both say "MEDIA" when explaining the context. The question is asking me to explain whether they match or not based on the given text.
4
5 First, let me look at the context provided: "The newsroom is awash with fears about the casino mogul's intentions after his refusal to admit ownership." This sentence mentions a casino mogul and their refusal to own up to something. That refusal is causing fear in the newsroom regarding their intentions.
6
7 Now, looking at both the model answer and the actual answer, they both are "MEDIA". I think this might be an abbreviation or shorthand for media-related reasons. The context talks about the newsroom, which is a place associated with media organizations or journalists. So, when there's fear about someone's intentions, especially related to ownership, it makes sense that the media would be concerned and involved.
8
9 Wait, but why specifically does it say "MEDIA"? Maybe it's short for something else or maybe it's just a coincidence. However, given that the context is in a newsroom setting, it's likely referring to media-related issues.
10
11 Let me break it down: The casino mogul refusing ownership could imply some kind of hidden agenda or control. Since this is in a newsroom, which deals with reporting and information, the refusal might be seen as trying to hide something. This fear could lead to media coverage or reporting on it, hence the mention of MEDIA.
12
13 So, putting it together, both answers refer to the involvement or concern of media outlets regarding the casino mogul's actions. Therefore, they match because the context clearly ties into a media-related situation.
14
15 </think>
16
17 The model answer and actual answer both state "MEDIA" because the context provided refers to a newsroom setting, where concerns about a casino mogul's intentions are likely related to media involvement or reporting. The refusal to admit ownership sparks fear, suggesting possible media coverage or concerns, thus aligning both answers with the media-related context. 
18
19 **Answer:** Both answers match because the context involves a newsroom, indicating media-related concerns over a casino mogul's intentions.

結論

推理的力量使用戶對模型的功能有了寶貴的了解,并凸顯了其優勢與不足。它增強了對系統的理解,并提供了改進系統的路徑。

設想一個只提供推理決策而不提供任何解釋的模型,那么用戶將永遠無法理解為什么模型會提供這些決策,并且可能難以對其產生信心。

原文標題:Text Clustering With Deepseek Reasoning,作者:Kalpan Dharamshi

責任編輯:姜華 來源: 51CTO內容精選
相關推薦

2025-02-27 08:00:00

DeepSeek大模型人工智能

2023-04-02 14:16:45

凸集算法集合

2023-05-10 08:00:00

聚類分析數據分析聚類算法

2024-12-20 16:00:00

Python文本分類聚類

2025-04-30 09:19:32

2025-05-22 10:06:49

2022-11-10 15:58:41

模型訓練

2023-06-30 17:59:27

Ray離線推理

2025-03-19 09:38:58

2025-03-07 09:57:01

2017-08-01 16:44:33

機器學習算法文本挖掘

2025-02-19 07:59:06

2025-05-26 04:00:00

2023-03-01 07:41:16

廣告創意數據稀疏算法

2025-02-28 07:11:20

2025-02-08 09:44:11

DeepSeekAI模型

2014-07-02 10:34:08

聚類算法算法

2025-02-13 08:51:23

DeepSeek大模型

2025-02-24 10:07:04

點贊
收藏

51CTO技術棧公眾號

精品乱子伦一区二区三区| 亚洲精品国产动漫| 中文字幕av亚洲精品一部二部| 亚洲天堂av一区| 欧美在线亚洲在线| 人妻精品久久久久中文字幕69| 欧美性猛交bbbbb精品| 在线免费成人| 欧美激情一二三区| 欧美在线免费观看| 人妻无码一区二区三区免费| tube8在线hd| 亚洲色图88| 亚洲高清久久网| 成人在线免费高清视频| 国产又粗又猛又黄又爽| 不卡中文一二三区| 欧美日韩美女在线观看| 国产成人av一区二区三区| 国产免费一区二区三区四区| 福利一区二区| 国产精品无人区| 国产啪精品视频网站| 国产精品无码久久久久久| 日韩激情电影免费看| www..com久久爱| 久久乐国产精品| 国产一级免费片| 九色porny丨首页入口在线| 中日韩免费视频中文字幕| 精品久久蜜桃| 亚洲免费成人网| 亚洲小说欧美另类社区| 精品国产乱码久久久久久1区2区 | 老熟妇一区二区三区啪啪| 久久久久97| 欧美日韩亚洲激情| 一二三四中文字幕| 国产91久久久| 国产一区二区三区久久悠悠色av| 色偷偷88888欧美精品久久久 | www.激情成人| 99视频网站| 国产大片中文字幕| 西瓜成人精品人成网站| 色综合色综合色综合色综合色综合| 蜜桃91精品入口| 中文字幕免费视频观看| 午夜亚洲一区| 色一区av在线| 性欧美丰满熟妇xxxx性仙踪林| 国产精品毛片视频| 91精品福利在线| 黄色a级在线观看| 无码国产伦一区二区三区视频 | 九九久久电影| 制服.丝袜.亚洲.中文.综合| 免费在线看黄色片| 九九热视频在线观看| 久99久精品视频免费观看| 久久91亚洲精品中文字幕| 国模私拍在线观看| 久久国产三级| 亚洲成人精品在线观看| 欧美成熟毛茸茸复古| 亚洲欧美一二三区| 综合精品一区| 欧美成人激情视频| 3d动漫精品啪啪一区二区下载| 欧美网色网址| 制服丝袜一区二区三区| 特黄特黄一级片| 国产高清不卡| 一区二区三区在线看| 欧美一区三区二区在线观看| 国产福利资源在线| 日韩av网站免费在线| 欧美精品video| 波兰性xxxxx极品hd| 青青草原在线亚洲| 国产午夜精品麻豆| 三级黄色片播放| 一区二区免费| 欧美人牲a欧美精品| 黄在线观看网站| wwww在线观看免费视频| 国产精品久久久久久久久免费樱桃| 国内视频一区| 99视频在线观看免费| 成人黄色在线网站| 亚洲xxx大片| 一卡二卡在线视频| 日韩国产欧美三级| 日本韩国在线不卡| 国产一区二区三区成人| 成人av在线播放网址| 日韩一区二区三区资源| 毛片免费在线观看| 91影院在线免费观看| 99精品国产高清一区二区| 天天干视频在线观看| 国产成人精品一区二区三区四区| 国产精品久久99久久| 99热只有这里有精品| 亚洲欧洲日本一区二区三区| 九九精品视频在线观看| 欧美a视频在线观看| 性感少妇一区| 亚洲bt天天射| 国产草草影院ccyycom| 久久亚洲精品国产精品紫薇| 久久99影院| 天堂√在线中文官网在线| eeuss国产一区二区三区| 日韩视频专区| segui88久久综合9999| 香港成人在线视频| 国产综合中文字幕| av人人综合网| 91精品国产入口| 丰满少妇中文字幕| 精品国产一区二区三区噜噜噜| 亚洲午夜久久久久久久| 亚洲精品一区二区三区影院忠贞| 国产最新精品| 日韩一区二区三区国产| 三级av在线免费观看| 亚洲国产日韩欧美在线| 欧美xxxx做受欧美| 在线观看免费黄色小视频| 久久99国产精品尤物| 美脚丝袜一区二区三区在线观看 | 欧美黑人巨大精品一区二区| 欧美精品一区二区蜜桃| 亚洲国产日韩欧美一区二区三区| 91精品视频在线播放| 亚洲第一色网站| 91在线国产观看| 日本中文字幕在线视频观看| 天堂8中文在线最新版在线| 日本韩国欧美三级| 久久精品女同亚洲女同13| 欧美激情精品久久久六区热门| 久久久久久久久电影| 国产三级第一页| 成人精品高清在线| 精品免费久久久久久久| 国产麻豆一区二区三区| 欧美xxxxxxxx| 3d动漫精品啪啪一区二区下载 | 97视频在线观看播放| www欧美在线| 972aa.com艺术欧美| 免费观看美女裸体网站| 欧美日韩尤物久久| 欧美草草影院在线视频| 九九热视频精品| 成人高清视频在线| 国产极品尤物在线| 亚洲福利影视| 日韩精品中文字| 久久99国产综合精品免费| 久久女同性恋中文字幕| 亚洲黄色a v| 亚洲精品a区| 欧美激情精品久久久久久| 免费av一级片| 中文字幕一区二区视频| 午夜免费一级片| 国产一区二区三区日韩精品| 国产精品久久综合av爱欲tv| 高h调教冰块play男男双性文| 亚洲图片欧美视频| 在线观看日本一区二区| 日本天堂一区| 国产精品69精品一区二区三区| 亚洲男人第一天堂| 性感美女极品91精品| 91视频免费观看网站| 国产精品videosex极品| 国产精品永久在线| 你懂的视频在线播放| 欧洲av一区二区嗯嗯嗯啊| 插我舔内射18免费视频| 香蕉精品999视频一区二区| 午夜午夜精品一区二区三区文| 女人高潮被爽到呻吟在线观看| 亚洲裸体xxxx| 亚洲第一在线播放| 国产日韩欧美精品在线| 亚洲熟妇国产熟妇肥婆| 欧美日韩在线播放视频| julia一区二区中文久久94| 男人的天堂免费在线视频| 日韩中文字幕在线观看| 日韩永久免费视频| 欧美性videosxxxxx| 亚洲国产av一区| 在线视频亚洲| 精品国产综合区久久久久久| 精品网站在线| 欧美—级a级欧美特级ar全黄| 黄色片在线播放| 欧美videos大乳护士334| 亚洲精品久久久久久久蜜桃| 久久这里都是精品| 欧美激情第一区| 媚黑女一区二区| 欧美日韩一区二区三| 95精品视频| 日韩免费在线视频| 男女视频在线观看| 日韩美一区二区三区| 欧美成人手机视频| 东方欧美亚洲色图在线| 欧美乱大交xxxxx潮喷l头像| 日韩国产综合| 成人欧美在线视频| 中国av在线播放| 日韩免费电影网站| 亚洲特级黄色片| 色综合久久精品| www.youjizz.com亚洲| 亚洲欧洲国产日韩| 韩国三级hd中文字幕有哪些| 青青草精品视频| 日韩视频第二页| 亚洲国产一区二区三区a毛片| 亚洲黄色网址在线观看| 97色成人综合网站| 欧美亚洲激情在线| h网站在线免费观看| 欧美三级日韩在线| 欧美色视频一区二区三区在线观看| 久久综合九色综合97婷婷女人 | 中文字幕久久久久| 亚洲欧美激情在线| 国产精品一区二区无码对白| 国产乱人伦偷精品视频不卡 | 久久亚洲高清| 神马久久av| 欧美男人的天堂| 亚洲理论电影| 欧美专区一二三| 欧美男gay| 色综合电影网| 97精品国产| 高清视频在线观看一区| 亚洲不卡视频| 日本一区二区在线播放| 女海盗2成人h版中文字幕| 5252色成人免费视频| 综合日韩av| 国产精品高潮在线| 欧洲亚洲精品| 亚洲最大的av网站| 91欧美日韩在线| 久久精品一区二区三区不卡免费视频| 欧美成a人免费观看久久| 久久综合狠狠综合久久综青草| 亚洲美女15p| 亚洲 国产 日韩 综合一区| 日韩极品一区| 欧美 日韩 国产精品| 亚洲激情二区| 九色porny91| 99riav1国产精品视频| 欧美国产亚洲一区| 日韩精品亚洲专区| 色18美女社区| 爽好多水快深点欧美视频| 黄色三级中文字幕| 在线午夜精品| 亚洲36d大奶网| 国产不卡免费视频| 中文字幕在线观看日| 国产一区二区三区成人欧美日韩在线观看 | 中文字幕a级片| 日韩欧美在线观看一区二区三区| av黄色在线播放| 欧美亚州韩日在线看免费版国语版| 亚洲自拍第二页| 亚洲第一区在线观看| 国产高清av在线| 日韩黄色高清视频| 全国男人的天堂网| 亚洲人成在线免费观看| 亚洲人在线观看视频| 在线观看国产精品91| 黄色毛片在线看| 久久99热精品| 春暖花开亚洲一区二区三区| 欧美亚洲国产日韩2020| 亚洲国产91视频| 欧美成人免费在线| 欧美视频福利| 欧美视频在线第一页| 老司机精品福利视频| 潘金莲一级淫片aaaaaaa| 国产一区二区三区四区五区美女| 国产老熟女伦老熟妇露脸| 成人性视频免费网站| 国产毛片欧美毛片久久久| 亚洲国产中文字幕在线视频综合| 中文字幕在线日亚洲9| 亚洲缚视频在线观看| 免费av在线播放| 久久久国产精品亚洲一区| 在线看的av网站| 久久精品福利视频| 日本成人三级电影| 国产高清精品一区| 天天久久综合| 国产欧美123| 美女一区二区三区在线观看| 美女网站色免费| 久久99国产精品尤物| 在线观看福利片| 天天影视涩香欲综合网| 久久中文字幕免费| 亚洲成人久久电影| 大地资源网3页在线观看| 欧美成人免费视频| 国产一区二区三区朝在线观看| 久久99九九| 亚洲茄子视频| 欧美xxxxx少妇| 亚洲精品中文在线观看| 一区二区三区精| 中文欧美日本在线资源| 毛片在线看片| 国产精品亚洲欧美导航| 中文字幕伦av一区二区邻居| 人人干视频在线| 成人黄色777网| 国产午夜小视频| 欧美性生活大片视频| 九色在线视频| 国产精品18久久久久久麻辣| 精品在线99| 一区二区三区免费播放| 日本一区二区三区国色天香| 午夜精品久久久久久久蜜桃| 亚洲男人天堂九九视频| 午夜影院一区| 日韩欧美精品一区二区| 日韩激情视频网站| 国产精品理论在线| 亚洲一区二区av在线| 亚洲精品久久久久久久久久| 久久久久久久久久久国产| 国产主播性色av福利精品一区| 一本久道高清无码视频| www..com久久爱| 精品人妻一区二区三区潮喷在线 | 欧美日韩一区二区三区在线看| 高清中文字幕一区二区三区| 国产精品偷伦视频免费观看国产 | 亚洲精品亚洲人成人网| 亚洲AV无码精品色毛片浪潮| 久久久久久成人精品| 日韩一级电影| 老司机午夜av| 亚洲婷婷综合色高清在线| 亚洲第一天堂影院| 98精品在线视频| 精品美女一区| 青草全福视在线| 97久久人人超碰| 成人黄色免费网| 色综合久久悠悠| 秋霞综合在线视频| 中文字幕有码av| 一个色综合av| 国产免费黄色片| 久久免费国产视频| 国产一区二区观看| а 天堂 在线| 午夜电影久久久| av国产在线观看| 国产乱码精品一区二区三区中文 | 日韩欧美视频一区二区三区| www.亚洲黄色| 大胆人体色综合| 欧美大片网站| 欧美黑人在线观看| 日本一区二区高清| 国产高清第一页| 日本精品va在线观看| 亚洲激情中文在线| www.超碰97| 婷婷国产在线综合| av大全在线免费看| 极品校花啪啪激情久久| 美女视频一区在线观看| jizz国产免费| xxx成人少妇69| 亚洲小说图片| 亚洲精品久久一区二区三区777 | 亚洲熟女综合色一区二区三区|