精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

基于DeepSeek推理的文本聚類 原創

發布于 2025-3-31 08:25
瀏覽
0收藏

開發人員需要開發和理解一種新的文本聚類方法,并使用DeepSeek推理模型解釋推理結果。

本文將探索大型語言模型(LLM)中的推理領域,并介紹DeepSeek這款優秀工具,它能幫助人們解釋推論結果,構建能讓終端用戶更加信賴的機器學習系統。

在默認情況下,機器學習模型是一種黑盒,不會為決策提供開箱即用的解釋(XAI)。本文介紹如何使用DeepSeek模型,并嘗試將解釋或推理能力添加到機器學習世界中。

方法?

首先構建自定義嵌入和嵌入函數來創建向量數據存儲,并使用DeepSeek模型來執行推理。

以下是展示整個流程的一個簡單的流程圖。

基于DeepSeek推理的文本聚類-AI.x社區

數據?

(1)選擇一個新聞文章數據集來識別新文章的類別。該??數據集??可在Kaggle網站上下載。?

(2)從數據集中,使用short_description進行向量嵌入,并使用類別特征為每篇文章分配適當的標簽。

(3)數據集相當干凈,不需要對其進行預處理。

(4)使用pandas庫加載數據集,并使用scikit-learn將其拆分為訓練和測試數據集。

1 import pandas as pd
2
3 df = pd.read_json('./News_Category_Dataset_v3.json',lines=True)
4
5 from sklearn.model_selection import train_test_split
6 # Separate features (X) and target (y)
7 X = df.drop('category', axis=1)
8 y = df['category']
9
10 # Split data into training and testing sets
11 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
12
13 train_df = pd.concat([X_train, y_train], axis=1)
14 test_df = pd.concat([X_test, y_test], axis=1)

生成文本嵌入?

使用以下庫進行文本嵌入:

  • langchain—用于創建示例提示和語義相似性選擇器
  • langchain_chroma—用于創建嵌入并將其存儲在數據存儲中

1 from chromadb import Documents, EmbeddingFunction, Embeddings
2
3 from langchain_chroma import Chroma
4 from langchain_core.example_selectors import SemanticSimilarityExampleSelector
5 from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate

接下來,將構建自定義嵌入和嵌入函數。這些自定義函數將允許查詢部署在本地或遠程實例上的模型。

閱讀器可以為部署在遠程實例上的實例合并必要的安全機制(HTTPS、數據加密等),并調用REST端點來檢索模型嵌入。

1 class MyEmbeddings(Embeddings):
2
3 def __init__(self):
4 # Server address and port (replace with your actual values)
5 self.url = ""
6 # Request headers
7 self.headers = {
8 "Content-Type": "application/json"
9 }
10
11 self.data = {
12 # Use any text embedding model of your choice
13 "model": "text-embedding-nomic-embed-text-v1.5",
14 "input": None,
15 "encoding_format": "float"
16 }
17
18 def embed_documents(self, texts):
19 embeddings = []
20 for text in texts:
21 embeddings.append(self.embed_query(text))
22 return embeddings
23
24 def embed_query(self, input):
25 self.data['input'] = input
26 with requests.post(self.url, headers=self.headers, data=json.dumps(self.data)) as response:
27 res = response.text
28 yaml_object = yaml.safe_load(res)
29 embeddings = yaml_object['data'][0]['embedding']
30 return embeddings
31
32
33
34 class MyEmbeddingFunction(EmbeddingFunction):
35
36 def __call__(self, input: Documents) -> Embeddings:
37 return MyEmbeddings()

將定義一個簡單的函數,它將為新聞文章創建一個語義相似性選擇器。選擇器將用于使用訓練數據集創建向量嵌入。

1 def create_semantic_similarity_selector(train_df):
2
3 example_prompt = PromptTemplate(
4 input_variables=["input", "output"],
5 template="Input: {input}\nOutput: {output}",
6 )
7
8 # Examples of a pretend task of creating antonyms.
9 examples = []
10
11 for row in train_df.iterrows():
12 example = {}
13 example['input'] = row[1]['short_description']
14 example['output'] = row[1]['category']
15 examples.append(example)
16
17 semantic_similarity_selector = SemanticSimilarityExampleSelector.from_examples(
18 # The list of examples available to select from.
19 examples,
20 # The embedding class used to produce embeddings which are used to measure semantic similarity.
21 MyEmbeddings(),
22 # The VectorStore class that is used to store the embeddings and do a similarity search over.
23 Chroma,
24 # The number of examples to produce.
25 k=1,
26 ) 
27
28 return semantic_similarity_selector

調用上面的函數來生成新聞文章的嵌入。需要注意的是,訓練過程可能很耗時,可以將其并行化以使其更快運行。

1 semantic_similarity_selector = create_semantic_similarity_selector(train_df)

色度向量數據存儲用于存儲各種新聞文章及其相關標簽的向量表示。然后使用數據存儲中的嵌入來執行與測試數據集中文章的語義相似性,并檢查該方法的準確性。

將調用DeepSeek REST端點,并將從語義相似性選擇器接收到的響應和實際結果傳遞給測試數據集。隨后,將創建一個包含DeepSeek模型進行推理所需信息的上下文。

1 def explain_model_result(text, model_answer, actual_answer):
2 # REST end point for deepseek model.
3 url = ""
4 
5 # Request headers
6 headers = {
7 "Content-Type": "application/json"
8 }
9
10 promptJson = {
11 "question": 'Using the text, can you explain why the model answer and actual answer match or do not match ?',
12 "model_answer": model_answer,
13 "actual_answer": actual_answer,
14 "context": text,
15 }
16 prompt = json.dumps(promptJson)
17
18 # Request data (replace with your prompt)
19 data = {
20 "messages": [{"role": "user", "content": prompt}],
21 "temperature": 0.7,
22 "stream": True
23 }
24 captured_explanation = ""
25 with requests.post(url, headers=headers, data=json.dumps(data), stream=True) as response:
26 if response.status_code == 200:
27 for chunk in response.iter_content(chunk_size=None):
28 if chunk:
29 # Attempt to decode the chunk as UTF-8
30 decoded_chunk = chunk.decode('utf-8') 
31 # Process the chunk as a json or yaml to extract the explanation and concat it with captured_explanation object.
32 captured_explanation += yaml.safe_load(decoded_chunk)['data']['choices'][0]['delta']['content']
33 else:
34 print(f"Request failed with status code {response.status_code}")
35
36 return captured_explanation

以下解析測試數據集,并從DeepSeek模型中獲取解釋。

1 results_df = pd.DataFrame()
2 results_df['input'] = None
3 results_df['model_answer'] = None
4 results_df['actual_answer'] = None
5 results_df['explanation'] = None
6 for row in test_df.iterrows():
7 example = {}
8 example['input'] = row[1]['short_description']
9 model_result_category = semantic_similarity_selector.select_examples(example)
10 example['explanation'] = explain_model_result(example['input'],model_result_category[0]['output'],row[1]['category'])
11 example['model_answer'] = model_result_category[0]['output']
12 example['input'] = row[1]['category']
13 results_df.loc[len(results_df)] = example

結果?

以下將分享測試數據集中一些場景的結果。

第一個例子是當從語義相似性中捕獲的答案與測試數據集中的實際答案不匹配時。這種洞察力使人們能夠了解模型在做出預測時是否合理。think標簽提供了DeepSeek模型的初始思維過程,以理解問題陳述,然后為最終用戶整理答案。

在第一個例子中,DeepSeek可以解釋為什么模型得到了錯誤的答案。該模型只考慮句子中的旅游(TRAVEL)方面,而沒有考慮娛樂(ENTERTAINMENT)方面。這意味著嵌入模型需要更多的娛樂示例進行訓練。

1 <think>
2
3 Okay, so I'm trying to figure out why the model answer is "TRAVEL" and the actual answer is "ENTERTAINMENT." The context given is about going to Central Park and the Delacorte Theater to see Shakespeare under the night sky, with rain expected.
4
5 First, I need to understand what each term refers to. TRAVEL relates to visiting places, moving around, or tourism in general. ENTERTAINMENT is more about enjoyable activities, like theater, concerts, movies, etc., that provide pleasure.
6
7 Looking at the context: the person went to Central Park, which is a place they traveled to. Then they went to the Delacorte Theater for a Shakespeare performance. So, the main activities are both TRAVEL and ENTERTAINMENT because they're going out, seeing a play.
8
9 But why would there be a mismatch between model and actual answers? Maybe the model didn't consider that travel can also include attending theater or other performances as part of the entertainment aspect. So the actual answer is broader, including both aspects, while the model focuses only on TRAVEL.
10
11 Alternatively, perhaps the context doesn't emphasize one over the other. The key points are moving to a place (TRAVEL) and attending an event for enjoyment (ENTERTAINMENT). Depending on the focus, either could be considered the main answer, but typically, when someone goes somewhere to attend an event, both travel and entertainment elements come into play.
12
13 So, the model answer might have only picked TRAVEL, not considering ENTERTAINMENT. The actual answer includes both aspects, hence the mismatch.
14
15 </think>
16
17 The discrepancy between the model answer "TRAVEL" and the actual answer "ENTERTAINMENT" arises from the context provided. While travel is indeed part of the narrative—visiting Central Park—the primary focus is on attending a theater performance, which falls under entertainment. The actual answer captures both elements: moving to a place (travel) and engaging in an enjoyable event (entertainment). Thus, the model may have overlooked the entertainment aspect, considering only travel, whereas the actual response encompasses both activities.
18
19 **Answer:** 
20
21
21 The model answer "TRAVEL" focuses on visiting places, while the actual answer "ENTERTAINMENT" includes attending a theater performance. The context highlights both elements, leading to the mismatch in answers.

需要考慮模型的答案和實際答案不匹配的場景。然而,該模型在預測方面是合理的。

在第二個例子中,發生在法國的持械搶劫是一種犯罪(CRIME),因此將用戶文章標記為犯罪的模型不一定是錯誤的。DeepSeek的推理能夠為結果提供合理的理由。

1 <think>
2
3 Okay, so I'm trying to figure out why the model answer is "CRIME" and the actual answer is "WORLD NEWS" given the context: "French police recovered the merchandise stolen in an armed robbery on Wednesday." 
4
5 First, I need to understand what each part of this question is asking. The user wants me to explain why these two answers match or don't match based on the provided text. So, maybe I should start by analyzing the context and seeing how it relates to both CRIME and WORLD NEWS.
6
7 Looking at the context: It's about French police recovering stolen merchandise from an armed robbery. An armed robbery is definitely a crime, so that makes sense why "CRIME" is an answer. The model answer being CRIME aligns with the event described because it's a criminal act—a robbery.
8
9 Now, why is WORLD NEWS also an answer? Well, if I think about news in general, events like this are newsworthy. So perhaps the actual answer is considering that this incident is part of world news because it involves police action and theft, which can be significant enough to be reported internationally.
10
11 But wait, does the context specify whether it's considered world news or not? It just mentions French police recovering stolen goods in an armed robbery on Wednesday. Without more details about the scale or international implications, I'm not sure if it's explicitly world news. Maybe WORLD NEWS is a broader category that includes such events as part of their reporting.
12
13 So, why do they match and why don't they? They both are relevant because CRIME is directly related to the event, while WORLD NEWS is considering the newsworthiness of the event. But perhaps the model answer is more focused on the specific event being a crime, whereas WORLD NEWS is taking a broader view of news events.
14
15 I'm also thinking about how each answer approaches the context differently. The model answer is zeroing in on the type of event (crime), while the actual answer is considering it as a newsworthy event that might be reported in world news sections or channels.
16
17 So, to sum up, both answers are relevant but approach the context from different angles—Crime specifically relates to the event's nature, whereas WORLD NEWS broadens it into the realm of news reporting.
18
19 </think>
20
21 The model answer "CRIME" and the actual answer "WORLD NEWS" both address the provided context, but they do so from different perspectives. 
22
23 **CRIME**: The context explicitly describes an armed robbery, which is a criminal act. Therefore, "CRIME" directly relates to the nature of the event.
24
25 **WORLD NEWS**: While the event is indeed newsworthy, the term "WORLD NEWS" broadens the scope beyond the specific details, considering it as part of international or general news reporting.
26
27 In essence, both answers are relevant but focus on different aspects: "CRIME" highlights the event's nature as a criminal act, while "WORLD NEWS" recognizes its potential newsworthiness.

當模型和實際答案匹配時,將考慮推理。

匹配結果背后的推理增強了人們的信任,并建立了對模型預測的信心。

1 <think>
2
3 Okay, so I'm trying to understand why the model answer and the actual answer both say "MEDIA" when explaining the context. The question is asking me to explain whether they match or not based on the given text.
4
5 First, let me look at the context provided: "The newsroom is awash with fears about the casino mogul's intentions after his refusal to admit ownership." This sentence mentions a casino mogul and their refusal to own up to something. That refusal is causing fear in the newsroom regarding their intentions.
6
7 Now, looking at both the model answer and the actual answer, they both are "MEDIA". I think this might be an abbreviation or shorthand for media-related reasons. The context talks about the newsroom, which is a place associated with media organizations or journalists. So, when there's fear about someone's intentions, especially related to ownership, it makes sense that the media would be concerned and involved.
8
9 Wait, but why specifically does it say "MEDIA"? Maybe it's short for something else or maybe it's just a coincidence. However, given that the context is in a newsroom setting, it's likely referring to media-related issues.
10
11 Let me break it down: The casino mogul refusing ownership could imply some kind of hidden agenda or control. Since this is in a newsroom, which deals with reporting and information, the refusal might be seen as trying to hide something. This fear could lead to media coverage or reporting on it, hence the mention of MEDIA.
12
13 So, putting it together, both answers refer to the involvement or concern of media outlets regarding the casino mogul's actions. Therefore, they match because the context clearly ties into a media-related situation.
14
15 </think>
16
17 The model answer and actual answer both state "MEDIA" because the context provided refers to a newsroom setting, where concerns about a casino mogul's intentions are likely related to media involvement or reporting. The refusal to admit ownership sparks fear, suggesting possible media coverage or concerns, thus aligning both answers with the media-related context. 
18
19 **Answer:** Both answers match because the context involves a newsroom, indicating media-related concerns over a casino mogul's intentions.

結論

推理的力量使用戶對模型的功能有了寶貴的了解,并凸顯了其優勢與不足。它增強了對系統的理解,并提供了改進系統的路徑。

設想一個只提供推理決策而不提供任何解釋的模型,那么用戶將永遠無法理解為什么模型會提供這些決策,并且可能難以對其產生信心。

原文標題:??Text Clustering With Deepseek Reasoning??,作者:Kalpan Dharamshi

?著作權歸作者所有,如需轉載,請注明出處,否則將追究法律責任
收藏
回復
舉報
回復
相關推薦
久久人人超碰精品| 日韩一区精品字幕| 亚洲第一级黄色片| 国产亚洲欧美在线视频| 亚洲欧美视频一区二区| 国产乱国产乱300精品| 午夜免费在线观看精品视频| 90岁老太婆乱淫| 国产成人免费av一区二区午夜 | 国产精品香蕉一区二区三区| 欧美精品久久久久久久久久| 国产又粗又猛又爽视频| 一区二区三区视频播放| 欧美视频三区在线播放| 黄色激情在线视频| 欧美成人性生活视频| 99久久精品国产毛片| 国产日韩中文字幕| 国产专区第一页| 欧美a级片网站| 在线精品播放av| www国产视频| 91麻豆精品| 一本一本久久a久久精品综合麻豆| 午夜久久久久久久久久久| 日本中文字幕一区二区有码在线| 国产在线视频不卡二| 欧美一级视频一区二区| 免费在线观看日韩| 久久神马影院| 亚洲色图17p| 污污内射在线观看一区二区少妇| 国产精品视频一区二区三区| 欧美三级日韩在线| 国产女女做受ⅹxx高潮| 91九色在线播放| 亚洲精品网站在线观看| 欧美在线一二三区| 无码精品一区二区三区在线| 国产成人av一区二区三区在线 | 国产精品丝袜91| 欧美理论一区二区| 亚洲av激情无码专区在线播放| 国产精品亚洲专一区二区三区| 成人黄色影片在线| 伊人久久亚洲综合| 免费欧美在线视频| 日韩**中文字幕毛片| 成人免费视频毛片| 国产欧美在线| 91av视频在线观看| 日本在线视频中文字幕| 好吊日精品视频| 欧美激情视频三区| 免费麻豆国产一区二区三区四区| 真实国产乱子伦精品一区二区三区| 在线亚洲国产精品网| 超碰人人人人人人人| japanese国产精品| 最近中文字幕日韩精品| 99热99这里只有精品| 久久中文字幕av一区二区不卡| 伊是香蕉大人久久| 九一在线免费观看| 色小子综合网| 久久精品中文字幕电影| 国产suv一区二区三区| 欧美1区2区| 97久久久久久| 中文字幕在线欧美| 奇米777欧美一区二区| 国产欧美日韩精品丝袜高跟鞋| 亚洲中文一区二区三区| 国产美女精品人人做人人爽| 亚洲一区免费网站| 日批视频免费播放| 久久久久久久久一| 在线播放豆国产99亚洲| 97超碰在线公开在线看免费| 亚洲午夜视频在线| 国产综合免费视频| 丁香久久综合| 日韩美一区二区三区| 50一60岁老妇女毛片| 综合干狼人综合首页| 中文字幕亚洲一区在线观看| 久草资源在线视频| 久久国产日本精品| 国产在线精品一区免费香蕉| 亚洲乱码在线观看| 久久久久久免费网| 久久久久久久免费视频| 精精国产xxxx视频在线野外| 欧美亚洲国产一区在线观看网站| 少妇愉情理伦片bd| 亚洲动漫精品| 美乳少妇欧美精品| 日韩视频在线观看一区| 精品一区二区三区免费观看| 精品91免费| 欧美激情二区| 欧美日韩中文在线观看| 在线免费看v片| 日韩欧美在线精品| 久久精品最新地址| 日本久久综合网| 国产精品一区二区无线| 日本黄网免费一区二区精品| 怡红院在线播放| 欧美中文字幕久久| 精品国产一区在线| 我不卡手机影院| 日本久久久a级免费| 精品久久无码中文字幕| 久久精品视频一区二区三区| 成人免费a级片| 欧美videos粗暴| 亚洲毛片在线免费观看| 久久精品一区二区三| 久久国产日韩欧美精品| 久久久综合香蕉尹人综合网| 伊人影院在线视频| 欧美视频在线播放| 亚洲一级中文字幕| 亚洲精品黄色| 国产精品国产一区二区| 国产精品扒开做爽爽爽的视频| 在线观看视频一区二区| 在线精品一区二区三区| 午夜精品免费| 亚洲iv一区二区三区| av片在线看| 在线欧美日韩精品| 中文字幕一区二区三区人妻不卡| 136国产福利精品导航网址| 亚洲影视九九影院在线观看| 日本中文字幕在线看| 欧美影片第一页| 波多野吉衣中文字幕| 国产亚洲在线| 久久精品五月婷婷| 美女在线视频免费| 亚洲精品美女在线| 久久久久久久久久久久久久av| 国产69精品久久久久777| 日本精品免费视频| 精品视频一二| 欧美精品免费播放| 亚洲国产一二三区| 亚洲香肠在线观看| xxxx黄色片| 一区二区福利| 欧美激情第六页| 国产超碰精品| 在线观看欧美www| 亚洲国产无线乱码在线观看| 国产精品日日摸夜夜摸av| 中文字幕国产传媒| 久久网站免费观看| 91九色在线观看| 超碰97国产精品人人cao| 亚洲国产精品免费| 亚洲天堂视频网站| 国产欧美精品一区二区色综合| 成人免费xxxxx在线视频| 欧美一区二区性| 91欧美激情另类亚洲| 日韩另类在线| 国产视频丨精品|在线观看| 在线免费黄色av| 国产婷婷色一区二区三区| 国产原创精品在线| 欧美在线日韩| 久久99精品国产99久久| 欧洲av一区二区| 久久亚洲精品国产亚洲老地址| 精品国产区一区二| 狠狠久久五月精品中文字幕| 性欧美一区二区| 国产在线精品一区二区三区不卡| 国产xxxx振车| 国产伦精品一区二区三区视频| 国产在线视频2019最新视频| 免费男女羞羞的视频网站在线观看| 日韩av在线免费播放| 中文字幕在线2019| 亚洲精品成人精品456| 亚洲欧美日本一区| 久久精品二区亚洲w码| 性一交一乱一伧国产女士spa| 亚洲97av| 2014国产精品| 香蕉成人影院| 久久久综合免费视频| 懂色av中文在线| 精品久久久久久久人人人人传媒 | 免费观看在线综合色| 无码人妻精品一区二区蜜桃百度| 日韩aaa久久蜜桃av| 成人久久一区二区| 性欧美18xxxhd| 久久夜精品va视频免费观看| 日本免费一区二区三区最新| 91精品国产高清一区二区三区蜜臀 | 午夜精品三级视频福利| 成人动漫在线免费观看| 亚洲成人黄色网| 国产裸体无遮挡| 91黄色激情网站| 亚洲国产精一区二区三区性色| 国产精品女人毛片| 亚洲av无码一区二区二三区| 国产成人午夜精品影院观看视频 | 国产精品一卡二卡| 日韩av片网站| 性欧美长视频| 99在线免费视频观看| 91精品啪在线观看国产18| 日韩精品资源| 香蕉视频一区二区三区| 不卡视频一区二区三区| 只有精品亚洲| 国产欧美精品日韩| 欧美国产日韩电影| 日本人成精品视频在线| 91破解版在线观看| 欧美精品九九久久| 日本h片在线观看| 九九精品在线视频| 成人在线网址| 日韩最新免费不卡| 调教视频免费在线观看| 亚洲一区二区久久久| 欧洲免费在线视频| 亚洲激情中文字幕| 日日夜夜精品免费| 亚洲精品美女久久久久| 天天射天天色天天干| 亚洲电影免费观看| 手机在线观看毛片| 亚洲黄色av女优在线观看 | 一区二区三区四区欧美日韩| 国内黄色精品| 午夜精品一区二区三区在线观看| 天美av一区二区三区久久| 久久99欧美| 在线看成人短视频| 蜜桃传媒视频麻豆第一区免费观看 | 欧美一区二区在线免费观看| 一二三区中文字幕| 制服丝袜中文字幕亚洲| 国产日韩免费视频| 日韩欧美自拍偷拍| 国模无码一区二区三区| 亚洲第一区第一页| 欧美扣逼视频| 在线观看欧美www| 国产黄色在线网站| 欧美激情视频一区二区| aa国产成人| 欧美中文在线免费| 丁香婷婷久久| 99www免费人成精品| 超碰地址久久| 欧美亚洲免费高清在线观看| av中字幕久久| 激情六月天婷婷| 一本色道久久综合亚洲精品不| 国产肥臀一区二区福利视频| 丝袜脚交一区二区| 中文字幕在线视频精品| 国产成人精品一区二区三区四区 | 午夜精品国产更新| 亚洲第一网站在线观看| 欧美日韩成人在线| 亚洲av无码乱码国产精品久久| 日韩av在线影院| 午夜激情视频在线观看| 精品中文字幕在线2019| 午夜欧美激情| 成人动漫网站在线观看| 好吊妞视频这里有精品| 日韩精品久久一区| 欧美另类综合| 国产精品涩涩涩视频网站| 国产一区二区伦理| 青青草视频成人| 日韩码欧中文字| 中国一级免费毛片| 欧美乱妇一区二区三区不卡视频| 欧美 日韩 中文字幕| 在线性视频日韩欧美| 国产白丝在线观看| 国产精品第100页| 成人在线视频你懂的| 少妇免费毛片久久久久久久久| 欧美日韩亚洲国产精品| 老司机午夜av| 99视频国产精品| 夫妻性生活毛片| 黑人巨大精品欧美一区二区免费| 亚洲天堂免费av| 日韩精品欧美激情| 污污网站在线看| 国产精品美女www爽爽爽视频| 成人台湾亚洲精品一区二区| 伊人久久大香线蕉成人综合网| aa国产精品| 又黄又爽又色的视频| 中文字幕av一区二区三区高| 国产精品免费av一区二区| 7777精品伊人久久久大香线蕉完整版| 精品无人乱码| 97免费中文视频在线观看| 欧美日本三级| 一区二区精品在线观看| 老司机一区二区三区| 中文字幕三级电影| 亚洲欧美国产毛片在线| 中文字幕视频一区二区| 亚洲欧美激情四射在线日| 日本动漫理论片在线观看网站| 国产色视频一区| 成人情趣视频网站| 国产激情在线观看视频| www.亚洲国产| 久久免费公开视频| 日韩午夜小视频| 91精品久久久久久粉嫩| 成人免费视频在线观看超级碰| 黄色不卡一区| 美女网站免费观看视频| 91麻豆国产精品久久| 亚洲 欧美 视频| 亚洲国产欧美一区二区丝袜黑人| 性欧美猛交videos| 亚洲xxx自由成熟| 中文无码久久精品| 九九九久久久久久久| 亚洲欧美日韩在线| av在线亚洲天堂| 久久99国产综合精品女同| 欧美国产亚洲精品| 国产一区二区片| 成人午夜免费av| 日本道在线观看| 日韩久久免费视频| 亚洲高清黄色| 神马影院一区二区| 麻豆传媒一区二区三区| 极品色av影院| 欧美一二三四区在线| 免费在线看污片| 黑人巨大精品欧美一区二区小视频| 最新日韩av| 中国美女乱淫免费看视频| 欧美午夜精品久久久久久人妖| 日韩欧美在线观看一区二区| 国产精品99导航| 99久久综合| 樱花草www在线| 午夜视频在线观看一区| 美国成人毛片| 国产精品吴梦梦| 欧美伊人久久| 中文字幕三级电影| 欧美亚洲综合在线| 国产一区久久精品| 国产精品日韩一区二区免费视频| 99精品国产99久久久久久福利| 尤物视频最新网址| 欧美乱妇20p| 国产传媒av在线| 亚洲精品高清视频| 国产精品18久久久久久久久久久久| 久久精品这里只有精品| 国产视频自拍一区| 四虎精品一区二区免费| 日韩国产小视频| 国产蜜臀av在线一区二区三区| 国产精品高潮呻吟AV无码| 国内精品在线一区| 成人羞羞网站入口免费| 国产精品19p| 一本一道波多野结衣一区二区| 黄网站在线免费| 欧美连裤袜在线视频| 国产成人综合亚洲91猫咪| 国产精品一区无码| 久久电影一区二区| 亚洲自拍电影| 国产精品19p| 欧美三级视频在线播放| 岛国av在线网站| 在线视频不卡一区二区| 91免费国产在线| 99久久国产免费| 国产精品久久久久99| 极品中文字幕一区| 天堂а√在线中文在线鲁大师|