精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!

發布于 2024-8-28 09:31
瀏覽
0收藏

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

文章鏈接:https://arxiv.org/pdf/2407.08674
github鏈接:https://still-moving.github.io/


自定義文本生成圖像(T2I)模型最近取得了巨大進展,尤其是在個性化、風格化和條件生成等領域。然而,將這些進展擴展到視頻生成仍處于初期階段,主要原因是缺乏定制視頻數據。


本文介紹了Still-Moving,是一種無需定制視頻數據即可自定義文本生成視頻(T2V)模型的新穎通用框架。該框架適用于T2V模型的主要設計,其中視頻模型是在文本生成圖像(T2I)模型的基礎上構建的(例如,通過擴展)。


假設能夠訪問僅在靜態圖像數據上訓練的定制版本的T2I模型(例如,使用DreamBooth或StyleDrop)。直接將定制T2I模型的權重插入T2V模型通常會導致顯著的偽影或對定制數據的依從性不足。為了解決這個問題,本文訓練了輕量級的Spatial Adapters來調整由注入的T2I層產生的特征。重要的是,Adapters是在“凍結視頻”(即重復圖像)上訓練的,這些視頻是由定制T2I模型生成的圖像樣本構建的。


這種訓練通過一種新穎的Motion Adapters模塊得以實現,能夠在靜態視頻上進行訓練,同時保留視頻模型的運動先驗。在測試時,移除Motion Adapter 模塊,僅保留訓練好的Spatial Adapters。這恢復了T2V模型的運動先驗,同時遵循了定制T2I模型的空間先驗。在包括個性化、風格化和條件生成在內的多種任務中展示了本文方法的有效性。在所有評估場景中,本文的方法無縫集成了定制T2I模型的空間先驗和T2V模型提供的運動先驗。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

方法

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Motion Adapters

本文方法的一個關鍵組件是能夠在凍結圖像數據上訓練視頻模型V的權重。為了在不引入分布外輸入的情況下實現這一目標,提出訓練輕量級的Motion Adapters,以控制模型生成視頻中運動的存在。Motion Adapters在普通、非定制的T2V模型上訓練一次。本文的實現基于時間注意力投影矩陣的低秩適應(LoRA)(見下圖3(a))

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Spatial Adapters

本文方法的核心前提是特征分布的偏差可以通過簡單的線性投影來修正。因此,建議在每個注入的定制T2I層之后添加Spatial Adapters(見上面圖3(b))。這些adapters的任務是修正時間層輸入的分布差距。因此,它們的訓練需要通過整個視頻模型傳播梯度。與Motion Adapters類似,Spatial Adapters實現為低秩矩陣的乘法。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

實驗

這里展示了廣泛的定性和定量評估,并將本文的方法與主要baseline進行比較。在使用DreamBooth進行個性化和使用StyleDrop進行風格化的強大定制任務上進行了評估。此外,展示了本文的方法與ControlNet的結合,ControlNet能夠在保持原始結構的同時,將現有視頻定制為個性化對象或給定風格。在兩個著名的擴展T2V模型上展示了結果,分別是基于Imagen構建的Lumiere和基于Stable Diffusion構建的AnimateDiff,以證明本文方法的魯棒性。

Baselines

研究者們考慮了三種主要的baselines方法:

  • 原始權重注入:在T2V模型中用定制T2I權重替換T2I模型權重,正如Guo等人和Liew等人所應用的那樣;
  • 權重插值:在定制權重和預訓練T2I權重之間進行插值,正如Bar-Tal等人所應用的那樣;
  • 交錯訓練:受T2V訓練常用方法的啟發,使用以下方法微調視頻模型中的T2I權重:(i) 禁用時間層的定制圖像,和(ii) 啟用時間層的自然視頻。這個baseline方法與本文方法的關鍵區別在于,最終生成的視頻沒有像本文的方法框架那樣,明確地使用定制圖像數據進行監督。

評估數據

本文構建了一個包含個性化對象和風格的多樣化數據集。對于個性化,包括了來自DreamBooth數據集的五個不同對象,包括現實的(例如狗、貓)和分布外的(例如玩具)對象。對于風格化評估,使用了Lumiere中展示的三種風格,另外還有兩種具有挑戰性的現實和高度詳細的風格,見圖4。每種風格都能夠全面評估包含不同場景和對象的廣泛提示。這構成了一個包含10種不同個性化對象和風格的數據集。對于數據集中的每個項目,生成了10個在相同隨機種子和不同提示下的對比視頻,共計每個baseline100個對比視頻。

定性結果

前面圖1、下圖4和圖9展示了本文的方法在Lumiere上應用于視頻個性化和風格化時,在各種具有挑戰性的定制T2I模型上獲得的結果。個性化角色來自Avrahami等人或由Google生成。同樣,風格參考來自Hertz等人、Sohn等人或由Google生成??梢钥闯?,本文的方法保持了M1的空間先驗,同時匹配了來自V的創意運動先驗。例如,“水彩飛濺”風格(圖4(b))伴隨著飛濺的顏色運動,“恐怖電影”風格(圖4(b))結合了霧氣運動等。對于個性化,本文的方法展示了對現實(例如圖4(a)中的女人)和動畫角色(例如圖1中的貓)的內在動畫能力,同時生成了多樣的背景、場景和動態(例如沖浪、跳舞)。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

下圖13展示了本文的方法與在AnimateDiff上的原始注入baseline的定性比較。重要的是,AnimateDiff的作者強調了模型無縫插入微調T2I權重的能力??梢钥闯?,這種方法對于復雜的定制數據往往會產生不滿意的結果。對于風格化,“融化的金色”風格(頂部行)顯示出背景失真,并且缺乏該風格特有的融化滴落效果。對于個性化,小松鼠的特征沒有被準確捕捉(例如臉頰和前額的顏色)。此外,小松鼠的身份在不同幀中發生了變化。相比之下,應用本文的方法時,“融化的金色”背景與參考圖像相匹配,模型生成了滴落的運動。同樣,小松鼠保持了一致的身份,與參考圖像相符。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

接下來,前面圖1和下圖5展示了本文的方法與ControlNet結合的結果。在給定驅動視頻的情況下,本文的方法能夠生成一個遵循其結構的定制視頻,同時加入風格或角色。例如,圖5頂部一行的視頻被轉換為展示參考女性形象,同時保持驅動視頻的主要特征。有趣的是,ControlNet與Still-Moving的結合不僅能加入由條件決定的運動,還能加入由風格決定的動態運動。例如,圖5中的“融化的金色”風格為場景添加了滴落的運動。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

下圖6展示了本文的方法與領先的baseline方法(即插值和交錯訓練)在評估數據集示例上的定性比較??梢钥吹?,插值baseline在插值過程中本質上丟失了M1的信息。這在圖6中的個性化示例中最為明顯,插值過程中狗的身份丟失了。此外,可以看到插值并不總是足以克服分布差距,可能會保留顯著的偽影。交錯訓練baseline在兩種情況下都無法準確捕捉參考圖像。這可以歸因于baseline方法使用定制數據來修改模型的T2I層,同時忽略了時間層。如前面圖2所示,微調后的空間層與預訓練的時間層的結合經常會導致分布偏移,從而導致無法嚴格遵循定制數據。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

定量結果

通過自動指標和用戶研究對baseline方法進行了定量比較。


指標。根據圖像定制領域類似工作的常見做法,研究者們考慮每幀相對于驅動提示的CLIP文本-圖像相似度(CLIP-T)和每幀相對于定制數據的圖像-圖像相似度(CLIP-I)。在數據集的兩個子集(個性化、風格化)上的自動評估結果報告在下表1和圖7(a)、(b)中。本文的方法在所有評估子集和所有評估標準上均顯著優于所有baseline方法,如圖7和表1中報告的標準誤差(SME)所示。圖7中的趨勢與在定性比較(上圖6)中觀察到的趨勢類似。插值和注入baseline在風格化方面表現更好,這可以歸因于個性化T2I模型的更大分布差距。相反,交錯訓練baseline無法適應新風格,因為它僅在定制數據上訓練T2I模型權重。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

重要的是,簡單地使用定制T2I模型生成單個圖像并將其復制形成凍結視頻,可以獲得非常高的CLIP-I和CLIP-T分數。在缺乏評估生成運動質量的運動指標的情況下(正如多篇工作指出的[8, 16, 21]),采用用戶研究進一步評估生成視頻的質量。研究有31名參與者,每位參與者需對包含3個問題的20個比較進行投票。這共計1860票。在每個比較中,參與者會看到兩個隨機選自比較數據集的視頻——一個由本文的方法生成,另一個由baseline生成,兩個視頻都描繪了相同的參考主體/風格,并使用相同的提示和種子生成。參與者被要求回答3個問題:

  1. “哪個視頻更好地遵循了提供的參考圖像?”
  2. “哪個視頻與提供的文本提示更一致?”
  3. “哪個視頻顯示了更好的運動質量?”。


如上如圖7(c)、(d)所示,用戶研究結果在主體保真度和提示一致性方面與自動指標一致。此外,研究表明,與baseline方法相比,本文的方法生成的視頻在運動質量方面顯著優越,如SME所示。

消融研究

對方法的三個主要設計選擇進行了消融實驗,即(i)應用Motion Adapters,(ii)應用Spatial Adapters,和(iii)使用先驗保持損失。下圖8展示了這些消融的結果。當移除Motion Adapters并在靜態視頻上訓練時,模型生成的幾乎是靜態視頻(頂行)。當移除Spatial Adapters并改為訓練所有網絡權重時,觀察到運動仍然顯著減少(第二行),并且背景不那么多樣化。這可以歸因于優化參數數量的顯著增加,即使在存在Motion Adapters的情況下,模型也容易過擬合。這兩個消融實驗表明,本文方法的兩個主要新穎組件都是獲得有意義運動結果所必需的。最后,當移除先驗保持組件時(圖8第三行),模型在一定程度上失去了泛化能力,例如在圖8第一列中,小松鼠沒有戴帽子。此外,發現先驗保持有助于模型更好地保持其運動先驗,沒有它,運動有所減少。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

限制

本工作實現了定制T2I權重向T2V模型的即插即用注入。因此,結果本質上受限于定制T2I模型的結果。例如,當T2I模型未能準確捕捉定制對象的某些特征時,本文模型生成的視頻可能會表現出類似的行為。同樣,如果T2I定制模型對場景背景過擬合,本文的方法往往會產生類似的過擬合(圖10)。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

結論

文本到視頻(T2V)模型變得越來越強大,現在可以生成復雜的高分辨率電影鏡頭。然而,如果生成的內容能夠被整合到包含特定角色、風格和場景的更大敘事中,這些模型在實際應用中的潛力才能得到充分實現。因此,視頻定制任務變得至關重要,但實現這一目標的方法論仍然探索不足。


這項工作克服了實現這一目標的一個主要挑戰,即缺乏定制視頻數據。開發了一個新穎的框架,直接將圖像領域的巨大進展轉化到視頻領域。重要的是,本文的方法是通用的,可以應用于任何基于預訓練的T2I模型構建的視頻模型。本文的框架揭示了T2V模型所學習到的強大先驗,正如成功生成從未見過運動的特定主題的運動所證明的那樣。

Still-Moving效果驚艷!無需定制視頻數據,DeepMind讓文生定制視頻變得簡單!-AI.x社區

本文轉自 AI生成未來  ,作者:Google等  


原文鏈接:??https://mp.weixin.qq.com/s/2uG6KFMGZUuE-TTGGwyChg??

收藏
回復
舉報
回復
相關推薦
一级黄色香蕉视频| 欧美精品久久| 久久这里只有精品国产| 卡通动漫国产精品| 日本福利一区二区| 中文字幕日韩一区二区三区不卡| 国产高清在线观看视频| 国产日韩一区二区三区在线播放| 亚洲人免费视频| 一级片黄色免费| 美女高潮在线观看| 日韩一区日韩二区| 久久久精品动漫| 国产一区二区网站| 老牛国产精品一区的观看方式| 久久精品亚洲一区| 亚洲做受高潮无遮挡| 粉嫩一区二区三区在线观看| 高跟丝袜一区二区三区| 热这里只有精品| 精品福利视频导航大全| 国产成人欧美日韩在线电影| 国产精品福利在线观看| 国产午夜小视频| 国产精品久久久久蜜臀| 亚洲精品一区久久久久久| 国产又黄又嫩又滑又白| 色成人免费网站| 疯狂做受xxxx欧美肥白少妇| 国产一区二区三区播放| 在线播放日本| 久久夜色精品国产欧美乱极品| 91成人伦理在线电影| 国产精品sm调教免费专区| aa国产精品| 欧美精品生活片| 中文国语毛片高清视频| 极品美女一区二区三区| 日韩av一区在线| 无码人妻一区二区三区免费n鬼沢 久久久无码人妻精品无码 | 国产精品suv一区二区88 | 日韩视频在线播放| 亚洲色大成网站www| 成人免费不卡视频| 97视频资源在线观看| 99在线精品视频免费观看20| 麻豆成人综合网| 国产精品自产拍在线观看中文| 免费看毛片网站| 午夜亚洲性色视频| 91成人免费观看网站| 欧美亚洲天堂网| 亚洲国产99| 性欧美xxxx视频在线观看| 久久精品视频国产| 在线观看日韩av电影| 国内精品一区二区三区| 国产一级片免费观看| 伊人久久大香线蕉av超碰演员| 久久久久久69| 日韩精品乱码久久久久久| 99成人精品| 欧美在线亚洲在线| 国产91av在线播放| 久久66热re国产| 97人人香蕉| 天天影院图片亚洲| 国产欧美综合在线观看第十页| 日韩色妇久久av| 免费看a在线观看| 亚洲精品视频观看| 黄页网站在线观看视频| 乡村艳史在线观看| 欧美在线观看18| 欧美性受xxxxxx黑人xyx性爽| 91麻豆精品| 亚洲成人三级在线| 日本一区二区三区网站| 欧美日韩黑人| 超碰97人人做人人爱少妇| 国产一级中文字幕| 丝袜亚洲另类丝袜在线| 91九色视频在线| 天堂在线资源网| 中国色在线观看另类| 超碰97在线看| 性欧美freesex顶级少妇| 欧美视频中文一区二区三区在线观看| 91亚洲免费视频| av毛片精品| 国产一区二区精品丝袜| 丝袜美腿小色网| 亚洲伊人观看| 91麻豆桃色免费看| 亚洲欧洲精品视频| 中文字幕在线一区免费| 日韩av在线播放不卡| 青青热久免费精品视频在线18| 日韩一卡二卡三卡四卡| 国产呦小j女精品视频| 婷婷亚洲五月色综合| 97人人做人人爱| 91精品国产综合久| 久久亚洲精品小早川怜子| 少妇熟女一区二区| 欧美电影免费观看| 精品播放一区二区| 自拍偷拍第9页| 国产精品呻吟| 成人欧美一区二区三区黑人免费| 国产黄在线播放| 香蕉加勒比综合久久| 伊人国产在线视频| 亚洲人成亚洲精品| 欧美激情视频给我| 91 中文字幕| 久久精品一区八戒影视| 免费高清一区二区三区| 久久久久毛片| 亚洲视频专区在线| 亚洲国产成人精品激情在线| 国产一区在线看| 水蜜桃一区二区| 东京一区二区| 亚洲精品久久久久久久久久久| 亚洲天堂黄色片| 久久丁香综合五月国产三级网站| 精品欧美国产| 成人av影院在线观看| 日韩一区二区三区电影在线观看| 男人的天堂av网| 欧美专区在线| 国产在线资源一区| 久草在线资源站资源站| 日韩视频永久免费| 天堂а√在线中文在线鲁大师| 人人超碰91尤物精品国产| 久久久com| 色老头在线一区二区三区| 精品国产91九色蝌蚪| 婷婷色中文字幕| 国产精品一区二区三区99| 在线观看欧美一区| 自拍偷拍亚洲| 久久久精品美女| 国产又黄又爽视频| 国产精品久久久久久久久图文区| 亚洲色图久久久| 大色综合视频网站在线播放| 国产精品成人aaaaa网站| 精品亚洲综合| 欧美亚洲综合在线| 欧日韩不卡视频| 九色|91porny| 视色,视色影院,视色影库,视色网 日韩精品福利片午夜免费观看 | 欧美大片网站在线观看| 亚洲国产精品欧美久久| 亚洲国产另类av| 三级电影在线看| 老司机精品久久| 天天爽天天狠久久久| 97人人做人人爽香蕉精品| 色诱女教师一区二区三区| 在线不卡免费视频| 亚洲免费视频中文字幕| 美女露出粉嫩尿囗让男人桶| 精品成人久久| 欧美精品一区二区视频| 国产精品字幕| 日韩视频精品在线| 午夜精品久久久久久久99| 亚洲大片在线观看| 少妇久久久久久久久久| 久久精品国产亚洲a| 日韩视频一二三| 欧美男人操女人视频| 国产999精品视频| 国产区在线观看| 亚洲国产成人精品女人久久久 | 国产剧情在线| 亚洲国产精品专区久久| 日韩 国产 欧美| 亚洲视频图片小说| 日本黄色录像片| 日本中文一区二区三区| 99re8这里只有精品| 久久资源综合| 国产欧美欧洲在线观看| av日韩中文| 日韩在线视频一区| 三区在线观看| 日韩一区二区在线观看视频播放| 日韩久久久久久久久| 欧美国产亚洲另类动漫| 精品国产乱码久久久久夜深人妻| 久久国产日本精品| 成年在线观看视频| 教室别恋欧美无删减版| 99r国产精品视频| 日韩欧美2区| 久久久亚洲网站| 日本美女高清在线观看免费| 亚洲国产成人在线视频| 91亚洲精品国偷拍自产在线观看 | 免费看av在线| 亚洲成人综合网站| 潘金莲一级黄色片| wwwwxxxxx欧美| 在线观看免费看片| 美女网站色91| 欧美黄网站在线观看| 综合视频在线| 亚洲精品成人三区| 久久91成人| 国产亚洲精品美女久久久m| 日韩美女在线| 国产成人精品免高潮费视频| 国产色婷婷在线| 久久久久999| av大全在线免费看| 亚洲人成电影网站色xx| 免费观看的毛片| 欧美刺激午夜性久久久久久久| 中文字幕一区二区三区免费看| 精品人伦一区二区三区蜜桃网站| 2021亚洲天堂| 亚洲免费观看高清完整版在线| 国产又粗又猛又爽又黄的视频四季| 99久久er热在这里只有精品15| 中文字幕第六页| 国产综合久久久久久久久久久久| 国产福利影院在线观看| 国产精品尤物| 久久久久久久中文| 亚洲黄色视屏| 男人的天堂狠狠干| 在线国产精品一区| 青草视频在线观看视频| 狠狠爱www人成狠狠爱综合网 | 亚洲а∨天堂久久精品2021| 久久婷婷成人综合色| 天天插天天射天天干| 不卡一区中文字幕| 黄色网址在线视频| 97久久人人超碰| 四虎永久免费影院| 国产视频视频一区| jizz日本在线播放| 国产精品麻豆欧美日韩ww| 精品一区二区三孕妇视频| 亚洲国产精品国自产拍av| 国产又粗又长又硬| 综合网在线视频| 四虎免费在线视频| 亚洲一区二区三区在线看| 日韩免费一二三区| 婷婷久久综合九色综合伊人色| 成人在线免费看视频| 色先锋久久av资源部| 国产天堂第一区| 这里只有精品免费| 亚洲狼人综合网| 日韩电影免费观看中文字幕| 日韩欧美在线番号| 一区二区亚洲欧洲国产日韩| 无遮挡动作视频在线观看免费入口| 日韩一二三在线视频播| 在线视频国产区| 91国偷自产一区二区三区的观看方式| 欧产日产国产精品视频| 国产a∨精品一区二区三区不卡| 777午夜精品电影免费看| 成人免费高清完整版在线观看| 中文字幕日韩在线| 欧美在线3区| 亚洲成人一区| 久在线观看视频| 美国三级日本三级久久99| 中文字幕乱妇无码av在线| 99国产精品一区| 亚洲欧美另类日本| 亚洲伊人伊色伊影伊综合网| 91美女免费看| 欧美精品色综合| 天堂在线视频免费| 日韩在线观看你懂的| 高h视频在线播放| 国产精品久久久久久久久男| 日本成人精品| 日韩国产精品一区二区| 欧美天天视频| 激情网站五月天| 国产伦精品一区二区三区在线观看| 无码人妻一区二区三区免费n鬼沢| 久久亚洲一区二区三区四区| 天天天天天天天天操| 日韩欧美精品网站| va视频在线观看| 亚洲日本欧美中文幕| 51xtv成人影院| 国产精品久久久久久久久久新婚| 2021年精品国产福利在线| 秋霞毛片久久久久久久久| 一区视频在线看| 日本77777| 国产欧美日韩在线看| 国产无码精品久久久| 欧美精品乱码久久久久久按摩| 青青草免费观看免费视频在线| 欧美成人剧情片在线观看| 色天使综合视频| 精品久久蜜桃| 狠狠综合久久| 国产999免费视频| 国产清纯白嫩初高生在线观看91| 在线看成人av| 91精品国产综合久久精品性色| 国产小视频在线观看| 97视频在线免费观看| 日韩精品一区二区三区中文在线| 婷婷五月色综合| 天堂久久久久va久久久久| 亚洲精品乱码久久久久久蜜桃欧美| 国产精品狼人久久影院观看方式| 青青草免费观看视频| 亚洲国产精品成人一区二区| 91麻豆免费在线视频| 91精品久久久久久久久久久久久 | 亚洲青青一区| 一道精品一区二区三区| 日韩一区精品字幕| 黄色片视频免费观看| 午夜视频久久久久久| 亚洲美女综合网| 欧美大片免费看| www国产精品| 野外做受又硬又粗又大视频√| 国产麻豆成人精品| 丝袜美腿小色网| 日韩精品一区二区三区在线播放| 成人短视频在线观看| 91在线高清免费观看| 综合国产在线| 在线播放第一页| 午夜精品aaa| 色综合888| 国产精国产精品| 日韩欧美电影| 精品综合久久久久| 亚洲色大成网站www久久九九| 91成品人影院| 欧美插天视频在线播放| 精品中文字幕一区二区三区四区| 18视频在线观看娇喘| 国产美女精品在线| 1024手机在线视频| 亚洲国产高清高潮精品美女| 第一福利在线视频| 欧美一进一出视频| 奇米影视一区二区三区小说| 欧美性生给视频| 日韩免费福利电影在线观看| sqte在线播放| 欧美精品一区二区视频| 免费在线观看成人| 日本天堂中文字幕| 日韩成人中文字幕| 日本成人片在线| 中文字幕欧美人与畜| 国产不卡在线一区| 日本午夜视频在线观看| 亚洲天堂视频在线观看| 9999精品视频| 免费无码毛片一区二三区| 久久一日本道色综合| 国产精品久久久久久久久毛片| 欧美激情videos| 亚洲区小说区图片区qvod| 日本黄大片一区二区三区| 一级精品视频在线观看宜春院 | 伊人免费在线观看高清版| 久久香蕉国产线看观看网| 老汉色老汉首页av亚洲| 成年网站在线播放| 亚洲一区二区三区四区在线免费观看 | 国产视频久久久久| 懂色aⅴ精品一区二区三区| 99er在线视频| 欧美经典一区二区三区| 精品国自产拍在线观看| 国产成人免费av电影| 欧美福利电影在线观看| 美女100%无挡| 欧美大黄免费观看| 久久69成人| 中文字幕日本最新乱码视频| 亚洲色图视频网站| 久久精品色图| 成人欧美一区二区| 精品制服美女久久|