精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

代理式AI的五級(jí)式綜合教程:從基礎(chǔ)快速響應(yīng)到全自主代碼生成與執(zhí)行

譯文
人工智能
本教程專為在Google Colab上無縫運(yùn)行而設(shè)計(jì)。從一個(gè)簡單的“處理器”開始(僅回顯模型輸出),你將逐步構(gòu)建路由邏輯、集成外部工具、編排多步驟工作流,并最終使模型能夠規(guī)劃、驗(yàn)證、優(yōu)化并執(zhí)行自己的Python代碼。

譯者 | 核子可樂

審校 | 重樓

在本教程中,我們將講解代理式架構(gòu)的五個(gè)級(jí)別,從最簡單的語言模型調(diào)用到完全自主的代碼生成和執(zhí)行系統(tǒng)。本教程專為在Google Colab上無縫運(yùn)行而設(shè)計(jì)。從一個(gè)簡單的“處理器”開始(僅回顯模型輸出),你將逐步構(gòu)建路由邏輯、集成外部工具、編排多步驟工作流,并最終使模型能夠規(guī)劃、驗(yàn)證、優(yōu)化并執(zhí)行自己的Python代碼。在每個(gè)部分中,你都會(huì)找到詳細(xì)的解釋、自包含的演示函數(shù)以及清晰的提示,展示如何在實(shí)際AI應(yīng)用中平衡人工控制與機(jī)器自治。

import os
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import re
import json
import time
import random
from IPython.display import clear_output

我們導(dǎo)入核心Python和第三方庫,包括用于環(huán)境和執(zhí)行控制的os和time,以及Hugging Face的Transformers(pipeline、AutoTokenizer、AutoModelForCausalLM)用于模型加載和推理。此外,我們使用re和json解析LLM輸出、隨機(jī)種子和模擬數(shù)據(jù),同時(shí)利用clear_output保持整潔的Colab界面。

MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
def get_model_and_tokenizer():
 if not hasattr(get_model_and_tokenizer, "model"):
 print(f"Loading model {MODEL_NAME}...")
 tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
 model = AutoModelForCausalLM.from_pretrained(
 MODEL_NAME,
 torch_dtype=torch.float16,
 device_map="auto",
 low_cpu_mem_usage=True
 )
 get_model_and_tokenizer.model = model
 get_model_and_tokenizer.tokenizer = tokenizer
 print("Model loaded successfully!")

return get_model_and_tokenizer.model, get_model_and_tokenizer.tokenizer

我們定義了一個(gè)變量MODEL_NAME指向TinyLlama 1.1B聊天模型,并實(shí)現(xiàn)了一個(gè)懶加載輔助函數(shù)get_model_and_tokenizer(),該函數(shù)僅在首次調(diào)用時(shí)下載并初始化分詞器和模型,將其緩存以最小化開銷,并在后續(xù)調(diào)用中返回緩存實(shí)例。

def get_model_and_tokenizer():
 if not hasattr(get_model_and_tokenizer, "model"):
 print(f"Loading model {MODEL_NAME}...")
 tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
 model = AutoModelForCausalLM.from_pretrained(
 MODEL_NAME,
 torch_dtype=torch.float16,
 device_map="auto",
 low_cpu_mem_usage=True
 )
 get_model_and_tokenizer.model = model
 get_model_and_tokenizer.tokenizer = tokenizer
 print("Model loaded successfully!")

return get_model_and_tokenizer.model, get_model_and_tokenizer.tokenizer

這個(gè)輔助函數(shù)為TinyLlama模型及其標(biāo)記器實(shí)現(xiàn)了懶加載模式。在第一次調(diào)用時(shí),它下載并初始化半精度和自動(dòng)設(shè)備排布,將它們作為函數(shù)對(duì)象的屬性緩存,在后續(xù)調(diào)用時(shí),則直接返回已經(jīng)加載的實(shí)例以避免冗余開銷。

def generate_text(prompt, max_length=512):
 model, tokenizer = get_model_and_tokenizer()

 messages = [{"role": "user", "content": prompt}]
 formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False)

 inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)

 with torch.no_grad():
 output = model.generate(
 **inputs,
 max_new_tokens=max_length,
 do_sample=True,
 temperature=0.7,
 top_p=0.9,
 )

 generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

 response = generated_text.split("ASSISTANT: ")[-1].strip()
return response

generate_text函數(shù)封裝了TinyLlama推理流程:它獲取緩存的模型和分詞器,將用戶提示格式化為聊天模板,對(duì)輸入進(jìn)行分詞并移動(dòng)到模型設(shè)備,然后通過采樣參數(shù)生成響應(yīng)。生成完成后,它解碼輸出并通過“ASSISTANT: ”標(biāo)記提取助手的回答。

第一級(jí):簡單處理器

在最簡單的級(jí)別,代碼定義了一個(gè)直接的文本生成管道,將模型純粹視為語言處理器。當(dāng)用戶提供提示詞時(shí),simple_processor函數(shù)調(diào)用generate_text輔助函數(shù)生成自由形式的響應(yīng),并直接顯示該響應(yīng)。此級(jí)別展示了最基本的交互模式:接收輸入、生成輸出,程序流程完全由人工控制。

def simple_processor(prompt):
 """Level 1: Simple Processor - Model has no impact on program flow"""
 response = generate_text(prompt)
 return response

def demo_level1():
 print("\n" + "="*50)
 print("LEVEL 1: SIMPLE PROCESSOR DEMO")
 print("="*50)
 print("At this level, the AI has no control over program flow.")
 print("It simply takes input and produces output.\n")

 user_input = input("Enter your question or prompt: ") or "Write a short poem about artificial intelligence."
 print("\nProcessing your request...\n")

 output = simple_processor(user_input)
 print("OUTPUT:")
 print("-"*50)
 print(output)
print("-"*50)

simple_processor函數(shù)體現(xiàn)了智能體層次結(jié)構(gòu)中的簡單處理器,將模型純粹作為文本生成器;它接受用戶提供的提示并委托給generate_text。它返回模型生成的內(nèi)容,無任何分支或決策邏輯。伴隨的demo_level1例程提供了一個(gè)最小的交互循環(huán),打印清晰的標(biāo)題,請(qǐng)求用戶輸入(有合理的默認(rèn)值),調(diào)用simple_processor,然后顯示原始輸出,展示最基本的提示到響應(yīng)的工作流程,其中AI對(duì)程序流程沒有影響。

第二級(jí):路由機(jī)制

第二級(jí)引入基于模型分類的條件路由。router_agent函數(shù)首先要求模型將查詢分類為“技術(shù)性”、“創(chuàng)造性”或“事實(shí)性”,然后規(guī)范化該分類并將其分配到專門的處理函數(shù)(handle_technical_query、handle_creative_query或handle_factual_query)。此路由機(jī)制使模型能夠部分控制程序流程,指導(dǎo)后續(xù)交互路徑。

def router_agent(user_query):
 """Level 2: Router - Model determines basic program flow"""

 category_prompt = f"""Classify the following query into one of these categories:
 'technical', 'creative', or 'factual'.

 Query: {user_query}

 Return ONLY the category name and nothing else."""

 category_response = generate_text(category_prompt)

 category = category_response.lower()
 if "technical" in category:
 category = "technical"
 elif "creative" in category:
 category = "creative"
 else:
 category = "factual"

 print(f"Query classified as: {category}")

 if category == "technical":
 return handle_technical_query(user_query)
 elif category == "creative":
 return handle_creative_query(user_query)
 else: 
 return handle_factual_query(user_query)

def handle_technical_query(query):
 system_prompt = f"""You are a technical assistant. Provide detailed technical explanations.

 User query: {query}"""

 response = generate_text(system_prompt)
 return f"[Technical Response]\n{response}"

def handle_creative_query(query):
 system_prompt = f"""You are a creative assistant. Be imaginative and inspiring.

 User query: {query}"""

 response = generate_text(system_prompt)
 return f"[Creative Response]\n{response}"

def handle_factual_query(query):
 system_prompt = f"""You are a factual assistant. Provide accurate information concisely.

 User query: {query}"""

 response = generate_text(system_prompt)
 return f"[Factual Response]\n{response}"

def demo_level2():
 print("\n" + "="*50)
 print("LEVEL 2: ROUTER DEMO")
 print("="*50)
 print("At this level, the AI determines basic program flow.")
 print("It decides which processing path to take.\n")

 user_query = input("Enter your question or prompt: ") or "How do neural networks work?"
 print("\nProcessing your request...\n")

 result = router_agent(user_query)
 print("OUTPUT:")
 print("-"*50)
 print(result)
print("-"*50)

router_agent函數(shù)通過首先要求模型將用戶的查詢分類為“技術(shù)性”、“創(chuàng)造性”或“事實(shí)性”,然后規(guī)范化該分類并將其分配給相應(yīng)的處理程序(handle_technical_query、handle_creative_query或handle_factual_query),每個(gè)處理程序都將原始查詢包裝在適當(dāng)?shù)南到y(tǒng)風(fēng)格提示中,然后調(diào)用generate_text來實(shí)現(xiàn)路由器行為。demo_level2例程提供了一個(gè)清晰的CLI風(fēng)格界面,打印標(biāo)題,接受輸入(有默認(rèn)值),調(diào)用router_agent,并顯示分類后的響應(yīng),展示了模型如何通過對(duì)處理路徑的選擇來基本控制程序流程。

第三級(jí):工具調(diào)用

第三級(jí)通過嵌入基于JSON的函數(shù)選擇協(xié)議,賦予模型決定調(diào)用哪些外部工具的能力。tool_calling_agent函數(shù)向用戶提供一個(gè)問題及一系列潛在工具選項(xiàng)(如天氣查詢、信息搜索、日期時(shí)間獲取或直接響應(yīng)),并指示模型返回一個(gè)指定工具及其參數(shù)的有效JSON消息。通過正則表達(dá)式提取JSON對(duì)象后,代碼會(huì)安全地回退到直接響應(yīng)以防解析失敗。最后,模型整合工具結(jié)果生成連貫的答案。

def tool_calling_agent(user_query):
 """Level 3: Tool Calling - Model determines how functions are executed"""

 tool_selection_prompt = f"""Based on the user query, select the most appropriate tool from the following list:
 1. get_weather: Get the current weather for a location
 2. search_information: Search for specific information on a topic
 3. get_date_time: Get current date and time
 4. direct_response: Provide a direct response without using tools

 USER QUERY: {user_query}

 INSTRUCTIONS:
 - Return your response in valid JSON format
 - Include the tool name and any required parameters
 - For get_weather, include location parameter
 - For search_information, include query and depth parameter (basic or detailed)
 - For get_date_time, include timezone parameter (optional)
 - For direct_response, no parameters needed

 Example output format: {{"tool": "get_weather", "parameters": {{"location": "New York"}}}}"""

 tool_selection_response = generate_text(tool_selection_prompt)

 try:
 json_match = re.search(r'({.*})', tool_selection_response, re.DOTALL)
 if json_match:
 tool_selection = json.loads(json_match.group(1))
 else:
 print("Could not parse tool selection. Defaulting to direct response.")
 tool_selection = {"tool": "direct_response", "parameters": {}}
 except json.JSONDecodeError:
 print("Invalid JSON in tool selection. Defaulting to direct response.")
 tool_selection = {"tool": "direct_response", "parameters": {}}

 tool_name = tool_selection.get("tool", "direct_response")
 parameters = tool_selection.get("parameters", {})

 print(f"Selected tool: {tool_name}")

 if tool_name == "get_weather":
 location = parameters.get("location", "Unknown")
 tool_result = get_weather(location)
 elif tool_name == "search_information":
 query = parameters.get("query", user_query)
 depth = parameters.get("depth", "basic")
 tool_result = search_information(query, depth)
 elif tool_name == "get_date_time":
 timezone = parameters.get("timezone", "UTC")
 tool_result = get_date_time(timezone)
 else:
 return generate_text(f"Please provide a helpful response to: {user_query}")

 final_prompt = f"""User Query: {user_query}
 Tool Used: {tool_name}
 Tool Result: {json.dumps(tool_result)}

 Based on the user's query and the tool result above, provide a helpful response."""

 final_response = generate_text(final_prompt)
 return final_response

def get_weather(location):
 weather_conditions = ["Sunny", "Partly cloudy", "Overcast", "Light rain", "Heavy rain", "Thunderstorms", "Snowy", "Foggy"]
 temperatures = {
 "cold": list(range(-10, 10)),
 "mild": list(range(10, 25)),
 "hot": list(range(25, 40))
 }

 location_hash = sum(ord(c) for c in location)
 condition_index = location_hash % len(weather_conditions)
 season = ["winter", "spring", "summer", "fall"][location_hash % 4]

 temp_range = temperatures["cold"] if season in ["winter", "fall"] else temperatures["hot"] if season == "summer" else temperatures["mild"]
 temperature = random.choice(temp_range)

 return {
 "location": location,
 "temperature": f"{temperature}°C",
 "conditions": weather_conditions[condition_index],
 "humidity": f"{random.randint(30, 90)}%"
 }

def search_information(query, depth="basic"):
 mock_results = [
 f"First result about {query}",
 f"Second result discussing {query}",
 f"Third result analyzing {query}"
 ]

 if depth == "detailed":
 mock_results.extend([
 f"Fourth detailed analysis of {query}",
 f"Fifth comprehensive overview of {query}",
 f"Sixth academic paper on {query}"
 ])

 return {
 "query": query,
 "results": mock_results,
 "depth": depth,
 "sources": [f"source{i}.com" for i in range(1, len(mock_results) + 1)]
 }

def get_date_time(timezone="UTC"):
 current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime())
 return {
 "current_datetime": current_time,
 "timezone": timezone
 }

def demo_level3():
 print("\n" + "="*50)
 print("LEVEL 3: TOOL CALLING DEMO")
 print("="*50)
 print("At this level, the AI selects which tools to use and with what parameters.")
 print("It can process the results from tools to create a final response.\n")

 user_query = input("Enter your question or prompt: ") or "What's the weather like in San Francisco?"
 print("\nProcessing your request...\n")

 result = tool_calling_agent(user_query)
 print("OUTPUT:")
 print("-"*50)
 print(result)
 print("-"*50)

在第三級(jí)實(shí)現(xiàn)中,tool_calling_agent函數(shù)提示模型從預(yù)定義的實(shí)用程序集中選擇,例如天氣查詢、模擬網(wǎng)絡(luò)搜索或日期/時(shí)間檢索,通過返回一個(gè)包含選定工具名稱及其參數(shù)的JSON對(duì)象。然后,它安全地解析該JSON,調(diào)用相應(yīng)的Python函數(shù)以獲得結(jié)構(gòu)化數(shù)據(jù),并進(jìn)行后續(xù)模型調(diào)用,將工具的輸出整合到一個(gè)連貫的面向用戶的響應(yīng)中。

第四級(jí):多步智能體

第四級(jí)擴(kuò)展了工具調(diào)用模式,形成一個(gè)多步智能體,管理其工作流和狀態(tài)。MultiStepAgent類維護(hù)用戶輸入、工具輸出和智能體操作的內(nèi)部記憶。每次迭代生成一個(gè)規(guī)劃提示,總結(jié)整個(gè)記憶,要求模型選擇幾個(gè)工具之一,如網(wǎng)絡(luò)搜索模擬、信息提取、文本摘要或報(bào)告創(chuàng)建,或完成任務(wù)并生成最終輸出。執(zhí)行所選工具并將結(jié)果附加回記憶后,重復(fù)該過程,直到模型發(fā)出“完成”動(dòng)作或達(dá)到最大步驟數(shù)。最后,智能體將記憶整理成一個(gè)連貫的最終響應(yīng)。這種結(jié)構(gòu)展示了LLM如何協(xié)調(diào)復(fù)雜的多階段過程,同時(shí)咨詢外部函數(shù)并根據(jù)先前結(jié)果細(xì)化其計(jì)劃。

class MultiStepAgent:
 """Level 4: Multi-Step Agent - Model controls iteration and program continuation"""

 def __init__(self):
 self.tools = {
 "search_web": self.search_web,
 "extract_info": self.extract_info,
 "summarize_text": self.summarize_text,
 "create_report": self.create_report
 }
 self.memory = []
 self.max_steps = 5

 def run(self, user_task):
 self.memory.append({"role": "user", "content": user_task})

 steps_taken = 0
 while steps_taken < self.max_steps:
 next_action = self.determine_next_action()

 if next_action["action"] == "complete":
 return next_action["output"]

 tool_name = next_action["tool"]
 tool_args = next_action["args"]

 print(f"\n Step {steps_taken + 1}: Using tool '{tool_name}' with arguments: {tool_args}")

 tool_result = self.tools[tool_name](**tool_args)

 self.memory.append({
 "role": "tool",
 "content": json.dumps(tool_result)
 })

 steps_taken += 1

 return self.generate_final_response("Maximum steps reached. Here's what I've found so far.")

 def determine_next_action(self):
 context = "Current memory state:\n"
 for item in self.memory:
 if item["role"] == "user":
 context += f"USER INPUT: {item['content']}\n\n"
 elif item["role"] == "tool":
 context += f"TOOL RESULT: {item['content']}\n\n"

 prompt = f"""{context}

 Based on the above information, determine the next action to take.
 Choose one of the following options:
 1. search_web: Search for information (args: query)
 2. extract_info: Extract specific information from a text (args: text, target_info)
 3. summarize_text: Create a summary of text (args: text)
 4. create_report: Create a structured report (args: title, content)
 5. complete: Task is complete (include final output)

 Respond with a JSON object with the following structure:
 For tools: {{"action": "tool", "tool": "tool_name", "args": {{tool-specific arguments}}}}
 For completion: {{"action": "complete", "output": "final output text"}}

 Only return the JSON object and nothing else."""

 next_action_response = generate_text(prompt)

 try:
 json_match = re.search(r'({.*})', next_action_response, re.DOTALL)
 if json_match:
 next_action = json.loads(json_match.group(1))
 else:
 return {"action": "complete", "output": "I encountered an error in planning. Here's what I know so far: " + self.generate_final_response("Error in planning")}
 except json.JSONDecodeError:
 return {"action": "complete", "output": "I encountered an error in planning. Here's what I know so far: " + self.generate_final_response("Error in planning")}

 self.memory.append({"role": "assistant", "content": next_action_response})
 return next_action

 def generate_final_response(self, prefix=""):
 context = "Task history:\n"
 for item in self.memory:
 if item["role"] == "user":
 context += f"USER INPUT: {item['content']}\n\n"
 elif item["role"] == "tool":
 context += f"TOOL RESULT: {item['content']}\n\n"
 elif item["role"] == "assistant":
 context += f"AGENT ACTION: {item['content']}\n\n"

 prompt = f"""{context}

 {prefix} Generate a comprehensive final response that addresses the original user task."""

 final_response = generate_text(prompt)
 return final_response

 def search_web(self, query):
 time.sleep(1) 

 query_hash = sum(ord(c) for c in query)
 num_results = (query_hash % 3) + 2

 results = []
 for i in range(num_results):
 results.append(f"Result {i+1}: Information about '{query}' related to aspect {chr(97 + i)}.")

 return {
 "query": query,
 "results": results
 }

 def extract_info(self, text, target_info):
 time.sleep(0.5) 

 return {
 "extracted_info": f"Extracted information about '{target_info}' from the text: The text indicates that {target_info} is related to several key aspects mentioned in the content.",
 "confidence": round(random.uniform(0.7, 0.95), 2)
 }

 def summarize_text(self, text):
 time.sleep(0.5)

 word_count = len(text.split())

 return {
 "summary": f"Summary of the provided text ({word_count} words): The text discusses key points related to the subject matter, highlighting important aspects and providing context.",
 "original_length": word_count,
 "summary_length": round(word_count * 0.3)
 }

 def create_report(self, title, content):
 time.sleep(0.7)

 report_sections = [
 "## Introduction",
 f"This report provides an overview of {title}.",
 "",
 "## Key Findings",
 content,
 "",
 "## Conclusion",
 f"This analysis of {title} highlights several important aspects that warrant consideration."
 ]

 return {
 "report": "\n".join(report_sections),
 "word_count": len(content.split()),
 "section_count": 3
 }

def demo_level4():
 print("\n" + "="*50)
 print("LEVEL 4: MULTI-STEP AGENT DEMO")
 print("="*50)
 print("At this level, the AI manages the entire workflow, deciding which tools")
 print("to use, when to use them, and determining when the task is complete.\n")

 user_task = input("Enter a research or analysis task: ") or "Research quantum computing recent developments and create a brief report"
 print("\nProcessing your request... (this may take a minute)\n")

 agent = MultiStepAgent()
 result = agent.run(user_task)
 print("\nFINAL OUTPUT:")
 print("-"*50)
 print(result)
print("-"*50)

MultiStepAgent類維護(hù)用戶輸入和工具輸出的演變記憶,然后反復(fù)提示LLM決定其下一步行動(dòng),無論是搜索網(wǎng)絡(luò)、提取信息、匯總文本、創(chuàng)建報(bào)告還是完成任務(wù),執(zhí)行所選工具并將結(jié)果附加到記憶中,直到任務(wù)完成或達(dá)到步驟上限。在此過程中,它展示了第四級(jí)智能體如何通過讓模型控制迭代和程序繼續(xù)來協(xié)調(diào)多步驟工作流。

第五級(jí):完全自主智能體

在最高層次上,AutonomousAgent類展示了一個(gè)閉環(huán)系統(tǒng),其中模型不僅負(fù)責(zé)規(guī)劃和執(zhí)行,還能生成、驗(yàn)證、優(yōu)化并運(yùn)行新的Python代碼。記錄用戶任務(wù)后,智能體要求模型生成詳細(xì)計(jì)劃,然后提示其生成獨(dú)立的解決方案代碼,自動(dòng)清除Markdown格式。隨后的驗(yàn)證步驟查詢模型是否存在語法或邏輯問題;如果發(fā)現(xiàn)問題,則要求模型優(yōu)化代碼。驗(yàn)證后的代碼被包裝了沙箱實(shí)用程序,例如安全打印、捕獲輸出緩沖區(qū)和結(jié)果捕獲邏輯,并在受限制的本地環(huán)境中執(zhí)行。最后,智能體合成了一份專業(yè)報(bào)告,解釋了所做的工作、完成方式和最終結(jié)果。這一級(jí)別展示了真正自主的AI系統(tǒng),可以通過動(dòng)態(tài)代碼創(chuàng)建和執(zhí)行擴(kuò)展其能力。

class AutonomousAgent:
 """Level 5: Fully Autonomous Agent - Model creates & executes new code"""

 def __init__(self):
 self.memory = []

 def run(self, user_task):
 self.memory.append({"role": "user", "content": user_task})

 print(" Planning solution approach...")
 planning_message = self.plan_solution(user_task)
 self.memory.append({"role": "assistant", "content": planning_message})

 print(" Generating solution code...")
 generated_code = self.generate_solution_code()
 self.memory.append({"role": "assistant", "content": f"Generated code: ```python\n{generated_code}\n```"})

 print(" Validating code...")
 validation_result = self.validate_code(generated_code)
 if not validation_result["valid"]:
 print(" Code validation found issues - refining...")
 refined_code = self.refine_code(generated_code, validation_result["issues"])
 self.memory.append({"role": "assistant", "content": f"Refined code: ```python\n{refined_code}\n```"})
 generated_code = refined_code
 else:
 print(" Code validation passed")

 try:
 print(" Executing solution...")
 execution_result = self.safe_execute_code(generated_code, user_task)
 self.memory.append({"role": "system", "content": f"Execution result: {execution_result}"})

 # Generate a final report
 print(" Creating final report...")
 final_report = self.create_final_report(execution_result)
 return final_report

 except Exception as e:
 return f"Error executing the solution: {str(e)}\n\nGenerated code was:\n```python\n{generated_code}\n```"

 def plan_solution(self, task):
 prompt = f"""Task: {task}

 You are an autonomous problem-solving agent. Create a detailed plan to solve this task.
 Include:
 1. Breaking down the task into subtasks
 2. What algorithms or approaches you'll use
 3. What data structures are needed
 4. Any external resources or libraries required
 5. Expected challenges and how to address them

 Provide a step-by-step plan.
 """

 return generate_text(prompt)

 def generate_solution_code(self):
 context = "Task and planning information:\n"
 for item in self.memory:
 if item["role"] == "user":
 context += f"USER TASK: {item['content']}\n\n"
 elif item["role"] == "assistant":
 context += f"PLANNING: {item['content']}\n\n"

 prompt = f"""{context}

 Generate clean, efficient Python code that solves this task. Include comments to explain the code.
 The code should be self-contained and able to run inside a Python script or notebook.
 Only include the Python code itself without any markdown formatting.
 """

 code = generate_text(prompt)

 code = re.sub(r'^```python\n|```$', '', code, flags=re.MULTILINE)

 return code

 def validate_code(self, code):
 prompt = f"""Code to validate:
 ```python
 {code}
 ```

 Examine the code for the following issues:
 1. Syntax errors
 2. Logic errors
 3. Inefficient implementations
 4. Security concerns
 5. Missing error handling
 6. Import statements for unavailable libraries

 If the code has any issues, describe them in detail. If the code looks good, state "No issues found."
 """

 validation_response = generate_text(prompt)

 if "no issues" in validation_response.lower() or "code looks good" in validation_response.lower():
 return {"valid": True, "issues": None}
 else:
 return {"valid": False, "issues": validation_response}

 def refine_code(self, original_code, issues):
 prompt = f"""Original code:
 ```python
 {original_code}
 ```

 Issues identified:
 {issues}

 Please provide a corrected version of the code that addresses these issues.
 Only include the Python code itself without any markdown formatting.
 """

 refined_code = generate_text(prompt)

 refined_code = re.sub(r'^```python\n|```$', '', refined_code, flags=re.MULTILINE)

 return refined_code

 def safe_execute_code(self, code, user_task):

 safe_imports = """
 # Standard library imports
 import math
 import random
 import re
 import time
 import json
 from datetime import datetime

 # Define a function to capture printed output
 captured_output = []
 original_print = print

 def safe_print(*args, **kwargs):
 output = " ".join(str(arg) for arg in args)
 captured_output.append(output)
 original_print(output)

 print = safe_print

 # Define a result variable to store the final output
 result = None

 # Function to store the final result
 def store_result(value):
 global result
 result = value
 return value
 """

 result_capture = """
 # Store the final result if not already done
 if 'result' not in locals() or result is None:
 try:
 # Look for variables that might contain the final result
 potential_results = [var for var in locals() if not var.startswith('_') and var not in
 ['math', 'random', 're', 'time', 'json', 'datetime',
 'captured_output', 'original_print', 'safe_print',
 'result', 'store_result']]
 if potential_results:
 # Use the last defined variable as the result
 store_result(locals()[potential_results[-1]])
 except:
 pass
 """

 full_code = safe_imports + "\n# User code starts here\n" + code + "\n\n" + result_capture

 code_lines = code.split('\n')
 first_lines = code_lines[:3]
 print(f"\nExecuting (first 3 lines):\n{first_lines}")

 local_env = {}

 try:
 exec(full_code, {}, local_env)

 return {
 "output": local_env.get('captured_output', []),
 "result": local_env.get('result', "No explicit result returned")
 }
 except Exception as e:
 return {"error": str(e)}

 def create_final_report(self, execution_result):
 if isinstance(execution_result.get('output'), list):
 output_text = "\n".join(execution_result.get('output', []))
 else:
 output_text = str(execution_result.get('output', ''))

 result_text = str(execution_result.get('result', ''))
 error_text = execution_result.get('error', '')

 context = "Task history:\n"
 for item in self.memory:
 if item["role"] == "user":
 context += f"USER TASK: {item['content']}\n\n"

 prompt = f"""{context}

 EXECUTION OUTPUT:
 {output_text}

 EXECUTION RESULT:
 {result_text}

 {f"ERROR: {error_text}" if error_text else ""}

 Create a final report that explains the solution to the original task. Include:
 1. What was done
 2. How it was accomplished
 3. The final results
 4. Any insights or conclusions drawn from the analysis

 Format the report in a professional, easy to read manner.
 """

 return generate_text(prompt)

def demo_level5():
 print("\n" + "="*50)
 print("LEVEL 5: FULLY AUTONOMOUS AGENT DEMO")
 print("="*50)
 print("At this level, the AI generates and executes code to solve complex problems.")
 print("It can create, validate, refine, and run custom code solutions.\n")

 user_task = input("Enter a data analysis or computational task: ") or "Analyze a dataset of numbers [10, 45, 65, 23, 76, 12, 89, 32, 50] and create visualizations of the distribution"
 print("\nProcessing your request... (this may take a minute or two)\n")

 agent = AutonomousAgent()
 result = agent.run(user_task)
 print("\nFINAL REPORT:")
 print("-"*50)
 print(result)
print("-"*50)

AutonomousAgent類體現(xiàn)了完全自主智能體的自主性,包括維護(hù)用戶任務(wù)的連續(xù)記憶,并系統(tǒng)協(xié)調(diào)五大核心階段:規(guī)劃、代碼生成、驗(yàn)證、安全執(zhí)行和報(bào)告。啟動(dòng)運(yùn)行時(shí),智能體會(huì)提示模型生成解決任務(wù)的詳細(xì)計(jì)劃,并將該計(jì)劃存儲(chǔ)在記憶中。接下來,它要求模型基于該計(jì)劃創(chuàng)建獨(dú)立的Python代碼,去掉任何Markdown格式,并通過查詢模型語法、邏輯、性能和安全問題來驗(yàn)證代碼。如果驗(yàn)證發(fā)現(xiàn)任何問題,智能體還會(huì)指示模型優(yōu)化代碼,直至通過檢查。最終代碼被包裝在一個(gè)沙箱執(zhí)行框架中,包含捕獲的輸出緩沖區(qū)和自動(dòng)結(jié)果提取,并在隔離的本地環(huán)境中執(zhí)行。最后,智能體通過將執(zhí)行結(jié)果反饋給模型,生成一份精心制作的專業(yè)報(bào)告,具體解釋做了什么、如何完成以及獲得了哪些見解。隨附的demo_level5函數(shù)則提供一個(gè)簡單的交互循環(huán),即接受用戶任務(wù)、運(yùn)行智能體并呈現(xiàn)全面的最終報(bào)告。

Main函數(shù):囊括以上各步驟

def main():
 while True:
 clear_output(wait=True)
 print("\n" + "="*50)
 print("AI AGENT LEVELS DEMO")
 print("="*50)
 print("\nThis notebook demonstrates the 5 levels of AI agents:")
 print("1. Simple Processor - Model has no impact on program flow")
 print("2. Router - Model determines basic program flow")
 print("3. Tool Calling - Model determines how functions are executed")
 print("4. Multi-Step Agent - Model controls iteration and program continuation")
 print("5. Fully Autonomous Agent - Model creates & executes new code")
 print("6. Quit")

 choice = input("\nSelect a level to demo (1-6): ")

 if choice == "1":
 demo_level1()
 elif choice == "2":
 demo_level2()
 elif choice == "3":
 demo_level3()
 elif choice == "4":
 demo_level4()
 elif choice == "5":
 demo_level5()
 elif choice == "6":
 print("\nThank you for exploring the AI Agent levels!")
 break
 else:
 print("\nInvalid choice. Please select 1-6.")

 input("\nPress Enter to return to the main menu...")

if __name__ == "__main__":
main()

最后,main函數(shù)會(huì)呈現(xiàn)一個(gè)簡單的交互菜單循環(huán),清除Colab輸出以提高可讀性,顯示所有五個(gè)智能體級(jí)別以及退出選項(xiàng),然后將用戶的選擇分發(fā)到相應(yīng)的演示函數(shù),再等待輸入返回到菜單。這種結(jié)構(gòu)提供了一個(gè)集中的CLI風(fēng)格界面,使你可以按順序探索每個(gè)智能體級(jí)別,而無需手動(dòng)介入各具體環(huán)節(jié)。

通過這五個(gè)級(jí)別的實(shí)踐,我們深入了解了代理式AI的原則以及控制、靈活性和自治之間的權(quán)衡。我們看到系統(tǒng)如何從簡單的提示詞響應(yīng)行為演變?yōu)閺?fù)雜的決策管道,甚至自我修改代碼執(zhí)行。無論你是希望開發(fā)智能助手、構(gòu)建數(shù)據(jù)管道還是試驗(yàn)新興AI能力,這一漸進(jìn)框架都為設(shè)計(jì)強(qiáng)大且可擴(kuò)展的智能體提供了堅(jiān)實(shí)的路線指導(dǎo)。

原文標(biāo)題:A Comprehensive Tutorial on the Five Levels of Agentic AI Architectures: From Basic Prompt Responses to Fully Autonomous Code Generation and Execution,作者:Asif Razzaq

責(zé)任編輯:姜華 來源: 51CTO內(nèi)容精選
相關(guān)推薦

2025-11-10 10:00:00

2025-03-26 09:30:00

AI人工智能AIOps

2023-09-12 12:22:44

2025-01-17 17:29:44

2022-10-31 13:26:12

機(jī)器學(xué)習(xí)人工智能算法

2024-08-02 08:52:51

2025-11-21 08:57:28

2023-07-20 09:00:00

人工智能自主AI代理

2025-08-05 02:00:00

智能體智能體AIAI

2022-05-28 11:00:57

安全編碼安全代碼應(yīng)用安全

2023-11-29 08:00:00

人工智能機(jī)器學(xué)習(xí)

2023-04-10 10:28:33

ChatGPTAI風(fēng)險(xiǎn)管理計(jì)劃

2025-05-09 08:17:02

2024-10-11 14:55:25

RAG企業(yè)數(shù)據(jù)GenAI

2023-08-28 08:00:00

人工智能AgentGPT

2025-09-19 07:00:00

自主式AI人工智能智能體

2023-10-12 16:01:57

2025-03-17 07:00:00

自主式ACIO人工智能

2025-07-15 08:11:36

點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)

91视频观看视频| 亚洲激情成人| 欧美成人精品福利| 岛国大片在线播放| 国产精品系列视频| 欧美在线高清| 亚洲欧美综合图区| 97免费公开视频| 国产高清不卡| 一卡二卡欧美日韩| 日本成人看片网址| 性一交一乱一伧老太| 噜噜爱69成人精品| 欧美成人合集magnet| 久久久久亚洲av无码专区桃色| 欧美黄页免费| 黑丝美女久久久| 在线观看污视频| 国产小视频在线观看| 国产91综合网| 成人激情综合网| 中文字幕在线播| 悠悠资源网久久精品| 日韩在线精品一区| 91精彩刺激对白露脸偷拍| 在线精品自拍| 在线播放欧美女士性生活| 国产无套内射久久久国产| 91网址在线观看| 国产精品嫩草影院com| 久久久久久九九| 不卡的日韩av| 国产一区视频在线看| 国产精品高潮粉嫩av| 久久99精品波多结衣一区| 欧美精品激情| 超薄丝袜一区二区| www成人啪啪18软件| 亚洲电影男人天堂| 日韩黄色在线免费观看| 色诱av手机版| 日本成人手机在线| 欧美一级淫片007| www.久久av.com| 成人在线视频免费| 91久久国产最好的精华液| 黄色一级片播放| 1234区中文字幕在线观看| 亚洲激情一二三区| 日本大胆人体视频| 欧美videossex| 亚洲精品乱码久久久久久 | 久久视频这里有精品| 国产精品久久久久久福利| 国产精品三级电影| 四虎一区二区| 91看片在线观看| 欧美国产欧美综合| 日韩三级电影免费观看| 国产系列电影在线播放网址| 久久久.com| 日本亚洲导航| 91美女视频在线| 亚洲欧洲国产日本综合| 男女激烈动态图| 日本大胆在线观看| 性做久久久久久免费观看| 男人添女荫道口图片| 成人免费图片免费观看| 欧美天堂在线观看| 少妇性l交大片| 男女啪啪999亚洲精品| 欧美视频日韩视频| 福利视频999| 亚洲码欧美码一区二区三区| 亚洲福利视频在线| xxx在线播放| 日韩中文字幕高清在线观看| 久久成人18免费网站| www.99re7.com| 久久国产精品亚洲77777| 国产精品成人观看视频国产奇米| 这里只有精品999| 国产精品99久久久久久久女警| 国产精品一区二区a| 久久久久久青草| 日韩美女啊v在线免费观看| 日本免费成人网| 一级毛片久久久| 7777精品伊人久久久大香线蕉的 | www.色综合| 久久久久久天堂| 免费视频一区二区三区在线观看| 国产精品欧美一区二区| 亚洲国产精品一| 久久久青草青青国产亚洲免观| 亚洲欧洲三级| 极品美鲍一区| 51精品久久久久久久蜜臀| xxxxxx黄色| 国产精品99久久久久久动医院| 欧美激情亚洲综合一区| 国产精品高清无码| 成人蜜臀av电影| 亚洲精品国产一区| 草草在线观看| 欧美一区二区久久久| 真实乱视频国产免费观看 | 久久精品视频99| 日韩av在线电影| 精品一区二区三区在线播放视频| 精品视频高清无人区区二区三区| 9191在线| 色综合久久88色综合天天| ass极品水嫩小美女ass| 成人看的羞羞网站| 97国产成人精品视频| 国产免费福利视频| 中日韩av电影| 日本免费黄视频| 一区二区三区高清在线观看| 中文字幕亚洲国产| 色婷婷在线观看视频| 国产激情精品久久久第一区二区| 日韩三级电影网站| 午夜影视一区二区三区| 欧美va在线播放| 久久福利免费视频| 日韩精品色哟哟| 蜜桃传媒视频麻豆一区| 青春草在线免费视频| 欧美精品v国产精品v日韩精品| 91中文字幕永久在线| 亚洲神马久久| 精品91免费| 超清av在线| 欧美精品一区二| 青青草国产在线观看| 国内成+人亚洲+欧美+综合在线 | 户外极限露出调教在线视频| 亚洲不卡av一区二区三区| 日批视频在线看| 欧美一区二区三区久久精品| 成人在线中文字幕| 精品176二区| 欧美男人的天堂一二区| 老司机精品免费视频| 日本不卡一区二区三区高清视频| 欧美一区二区三区四区夜夜大片| 自拍一区在线观看| 亚洲欧洲日本专区| 国产字幕在线观看| 国产日产欧美精品一区二区三区| 免费观看精品视频| 国产一区二区三区不卡视频网站| 日产精品久久久一区二区福利| 视频一区二区在线播放| 色综合久久中文字幕| 在线观看福利片| 日本在线不卡视频| 资源网第一页久久久| 成人国产精品久久| 九九久久精品一区| 亚洲精品免费在线观看视频| 亚洲h精品动漫在线观看| 国模私拍在线观看| 久久久夜夜夜| 一本一道久久a久久综合精品 | 国产精品乱码视频| 在线能看的av网址| 亚洲一级黄色av| 一区二区www| 亚洲自拍另类综合| 三级网站在线免费观看| 美女国产一区二区| 大地资源网在线观看免费官网| 97视频一区| 欧美又大粗又爽又黄大片视频| 黄网站在线观看| 在线不卡免费欧美| 国产在线视频在线观看| 91麻豆精品一区二区三区| 美女一区二区三区视频| 亚洲成av人电影| 粉嫩av四季av绯色av第一区| 伊人久久国产| 亚洲开心激情网| 伊人久久一区二区| 亚洲一区二区三区四区五区中文| 免费的av网站| 麻豆高清免费国产一区| 欧美午夜性视频| 国产精品三级| av日韩免费电影| 日韩伦理三区| 久久99精品久久久久久琪琪| 欧美男男激情freegay| 欧美一二三四区在线| 色av性av丰满av| 一区二区三区在线免费| 国产又粗又猛又爽又黄av| 国产激情精品久久久第一区二区| 又色又爽又高潮免费视频国产| 欧美国产高潮xxxx1819| 日本一区二区免费看| 高清精品视频| 91牛牛免费视频| 91成人在线| 欧美性视频网站| 手机av在线播放| 色哟哟入口国产精品| 深夜福利免费在线观看| 日韩一区二区在线观看视频 | 日本欧洲国产一区二区| 在线播放一区二区精品视频| 国产在线日韩在线| 春暖花开亚洲一区二区三区| 久久琪琪电影院| 亚洲小说区图片区都市| 中文字幕欧美日韩在线| 免费黄色片在线观看| 亚洲成人网在线观看| 国产99999| 在线不卡a资源高清| 久久久久久av无码免费看大片| 精品久久久在线观看| 妺妺窝人体色www聚色窝仙踪| 中文字幕巨乱亚洲| 久久久久久国产精品无码| 99久久99久久免费精品蜜臀| 日韩高清一二三区| 国产精品香蕉一区二区三区| 在线观看免费不卡av| 免费在线一区观看| 亚洲成人av免费看| 天堂午夜影视日韩欧美一区二区| 1024精品视频| 久久国产精品亚洲77777| www.爱色av.com| 99国产精品久久久久久久成人热| 99亚洲国产精品| 亚洲最新av| 青青草综合视频| 午夜天堂精品久久久久| 男女激烈动态图| 你懂的一区二区| 久久福利一区二区| 亚洲激情成人| 欧美a在线视频| 老司机免费视频久久| 亚洲综合在线网站| 麻豆成人av在线| 欧美激情第一区| 国产高清精品网站| 日本天堂在线播放| 91原创在线视频| 四虎永久免费在线观看| 中文文精品字幕一区二区| www.4hu95.com四虎| 中文字幕制服丝袜一区二区三区 | 少妇愉情理伦三级| 国产精品国产自产拍高清av| 日本一级二级视频| 亚洲一区在线观看视频| 天天干天天干天天| 精品视频资源站| 99热这里只有精品5| 精品国产一二三区| 人人九九精品| 日韩在线资源网| 色噜噜狠狠狠综合欧洲色8| 97在线视频免费看| 成人看片网站| 91视频8mav| 日韩av午夜| 亚洲精品一区二区毛豆| 欧美成人精品| 国产精品网站免费| 日本sm残虐另类| 不许穿内裤随时挨c调教h苏绵| 91蜜桃在线观看| 国产美女网站视频| 亚洲一卡二卡三卡四卡五卡| 黄色片视频免费| 欧美一二三区在线观看| 欧洲综合视频| 欧美成人精品一区二区| 亚洲最大网站| 91精品国产91久久久久青草| 欧美一性一交| 五月天av影院| 久久精品一本| 国产精品熟妇一区二区三区四区 | 亚洲国产激情一区二区三区| 国产精品草草| 日本久久久久久久久久久久| 粉嫩在线一区二区三区视频| 成人激情五月天| 亚洲成人av在线电影| 亚洲一级片免费看| 日韩www在线| 影音先锋男人资源在线| 国产精品福利片| 超碰在线一区| 午夜啪啪免费视频| 久久久一二三| 中文字幕免费高清视频| 亚洲黄色免费电影| 国产一级精品毛片| 亚洲国产小视频| 婷婷在线播放| 91久久国产综合久久91精品网站| 蜜桃国内精品久久久久软件9| 久久国产精品免费观看| 日韩和欧美一区二区三区| 好男人香蕉影院| 亚洲精品综合在线| 亚洲一级黄色大片| 一区二区三区回区在观看免费视频| 超级碰碰不卡在线视频| 91视频国产一区| 91青青国产在线观看精品| 欧美aⅴ在线观看| av高清不卡在线| 国产网址在线观看| 日韩免费视频一区| 八戒八戒神马在线电影| 成人淫片在线看| 国产精品精品国产一区二区| www亚洲成人| 欧美国产精品中文字幕| 日韩 国产 欧美| 精品无人区乱码1区2区3区在线 | 国产精品国模在线| 久久91麻豆精品一区| 欧美性大战久久久久xxx| 99精品热视频| 黄色片免费观看视频| 日韩成人av在线| 在线看片福利| 日本一区免费| 麻豆一区二区在线| 久久久精品少妇| 日韩一区二区中文字幕| 久久五月精品中文字幕| 福利精品视频| 尤物在线精品| 法国伦理少妇愉情| 91激情五月电影| 日本中文字幕在线2020| 成人性生交xxxxx网站| 国产精品日韩二区| 99er精品视频| 日本黄色播放器| 黄色小说综合网站| 91日韩中文字幕| 精品久久五月天| 岛国在线视频网站| 欧美日韩一区二区视频在线| 爽好久久久欧美精品| 在线观看免费黄色网址| 7777精品伊人久久久大香线蕉| 国产不卡在线| 国产精品日韩一区二区三区| 国产精品毛片| 免费看一级黄色| 精品久久一区二区三区| sis001欧美| 亚洲欧洲另类精品久久综合| 国产麻豆91精品| av黄色在线看| 日韩中文有码在线视频| 一区二区日韩| 日本精品一区二区三区四区| 国产精品视频一区二区三区不卡| 国产乱淫片视频| 97在线视频免费| 久久美女视频| 无码人妻精品一区二区三| 日韩欧美一区二区三区| 日本蜜桃在线观看| 高清国产一区| 日韩影院在线观看| 九九热只有精品| 亚洲欧美另类国产| 成人短视频软件网站大全app| 男女视频网站在线观看| 国产精品久久毛片| 内射无码专区久久亚洲| 国产精品91一区| 黄色av成人| 成年人看的免费视频| 亚洲国产精品va在线| 国产原创一区| 浮妇高潮喷白浆视频| 亚洲欧洲av一区二区三区久久| 黄色一级大片在线免费看国产| 国产精品xxxxx| 最新国产拍偷乱拍精品| 激情高潮到大叫狂喷水|