5分鐘從零構建第一個 Flink 應用
在本文中,我們將從零開始,教您如何構建***個 Flink 應用程序。
開發環境準備
Flink 可以運行在 Linux, Max OS X, 或者是 Windows 上。為了開發 Flink 應用程序,在本地機器上需要有 Java 8.x 和 maven 環境。
如果有 Java 8 環境,運行下面的命令會輸出如下版本信息:
- $ java -version
- java version "1.8.0_65"
- Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
- Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)
如果有 maven 環境,運行下面的命令會輸出如下版本信息:
- $ mvn -version
- Apache Maven 3.5.4 (1edded0938998edf8bf061f1ceb3cfdeccf443fe; 2018-06-18T02:33:14+08:00)
- Maven home: /Users/wuchong/dev/maven
- Java version: 1.8.0_65, vendor: Oracle Corporation, runtime: /Library/Java/JavaVirtualMachines/jdk1.8.0_65.jdk/Contents/Home/jre
- Default locale: zh_CN, platform encoding: UTF-8
- OS name: "mac os x", version: "10.13.6", arch: "x86_64", family: "mac"
另外我們推薦使用 ItelliJ IDEA (社區免費版已夠用)作為 Flink 應用程序的開發 IDE。Eclipse 雖然也可以,但是 Eclipse 在 Scala 和 Java 混合型項目下會有些已知問題,所以不太推薦 Eclipse。下一章節,我們會介紹如何創建一個 Flink 工程并將其導入 ItelliJ IDEA。
創建 Maven 項目
我們將使用 Flink Maven Archetype 來創建我們的項目結構和一些初始的默認依賴。在你的工作目錄下,運行如下命令來創建項目:
- mvn archetype:generate \
- -DarchetypeGroupId=org.apache.flink \
- -DarchetypeArtifactId=flink-quickstart-java \
- -DarchetypeVersion=1.6.1 \
- -DgroupId=my-flink-project \
- -DartifactId=my-flink-project \
- -Dversion=0.1 \
- -Dpackage=myflink \
- -DinteractiveMode=false
你可以編輯上面的 groupId, artifactId, package 成你喜歡的路徑。使用上面的參數,Maven 將自動為你創建如下所示的項目結構:
- $ tree my-flink-project
- my-flink-project
- ├── pom.xml
- └── src
- └── main
- ├── java
- │ └── myflink
- │ ├── BatchJob.java
- │ └── StreamingJob.java
- └── resources
- └── log4j.properties
我們的 pom.xml 文件已經包含了所需的 Flink 依賴,并且在 src/main/java 下有幾個示例程序框架。接下來我們將開始編寫***個 Flink 程序。
編寫 Flink 程序
啟動 IntelliJ IDEA,選擇 “Import Project”(導入項目),選擇 my-flink-project 根目錄下的 pom.xml。根據引導,完成項目導入。
在 src/main/java/myflink 下創建 SocketWindowWordCount.java 文件:
- package myflink;
- public class SocketWindowWordCount {
- public static void main(String[] args) throws Exception {
- }
- }
現在這程序還很基礎,我們會一步步往里面填代碼。注意下文中我們不會將 import 語句也寫出來,因為 IDE 會自動將他們添加上去。在本節末尾,我會將完整的代碼展示出來,如果你想跳過下面的步驟,可以直接將***的完整代碼粘到編輯器中。
Flink 程序的***步是創建一個 StreamExecutionEnvironment 。這是一個入口類,可以用來設置參數和創建數據源以及提交任務。所以讓我們把它添加到 main 函數中:
- StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
下一步我們將創建一個從本地端口號 9000 的 socket 中讀取數據的數據源:
- DataStream text = env.socketTextStream("localhost", 9000, "\n");
這創建了一個字符串類型的 DataStream。DataStream 是 Flink 中做流處理的核心 API,上面定義了非常多常見的操作(如,過濾、轉換、聚合、窗口、關聯等)。在本示例中,我們感興趣的是每個單詞在特定時間窗口中出現的次數,比如說5秒窗口。為此,我們首先要將字符串數據解析成單詞和次數(使用Tuple2表示),***個字段是單詞,第二個字段是次數,次數初始值都設置成了1。我們實現了一個 flatmap 來做解析的工作,因為一行數據中可能有多個單詞。
- DataStream<Tuple2<String, Integer>> wordCounts = text
- .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
- @Override
- public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
- for (String word : value.split("\\s")) {
- out.collect(Tuple2.of(word, 1));
- }
- }
- });
接著我們將數據流按照單詞字段(即0號索引字段)做分組,這里可以簡單地使用 keyBy(int index) 方法,得到一個以單詞為 key 的Tuple2數據流。然后我們可以在流上指定想要的窗口,并根據窗口中的數據計算結果。在我們的例子中,我們想要每5秒聚合一次單詞數,每個窗口都是從零開始統計的。
- DataStream<Tuple2<String, Integer>> windowCounts = wordCounts
- .keyBy(0)
- .timeWindow(Time.seconds(5))
- .sum(1);
第二個調用的 .timeWindow() 指定我們想要5秒的翻滾窗口(Tumble)。第三個調用為每個key每個窗口指定了sum聚合函數,在我們的例子中是按照次數字段(即1號索引字段)相加。得到的結果數據流,將每5秒輸出一次這5秒內每個單詞出現的次數。
***一件事就是將數據流打印到控制臺,并開始執行:
- windowCounts.print().setParallelism(1);
- env.execute("Socket Window WordCount");
***的 env.execute 調用是啟動實際Flink作業所必需的。所有算子操作(例如創建源、聚合、打印)只是構建了內部算子操作的圖形。只有在execute()被調用時才會在提交到集群上或本地計算機上執行。
下面是完整的代碼,部分代碼經過簡化(代碼在 GitHub 上也能訪問到):
- package myflink;
- import org.apache.flink.api.common.functions.FlatMapFunction;
- import org.apache.flink.api.java.tuple.Tuple2;
- import org.apache.flink.streaming.api.datastream.DataStream;
- import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
- import org.apache.flink.streaming.api.windowing.time.Time;
- import org.apache.flink.util.Collector;
- public class SocketWindowWordCount {
- public static void main(String[] args) throws Exception {
- // 創建 execution environment
- final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
- // 通過連接 socket 獲取輸入數據,這里連接到本地9000端口,如果9000端口已被占用,請換一個端口
- DataStream<String> text = env.socketTextStream("localhost", 9000, "\n");
- // 解析數據,按 word 分組,開窗,聚合
- DataStream<Tuple2<String, Integer>> windowCounts = text
- .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
- @Override
- public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
- for (String word : value.split("\\s")) {
- out.collect(Tuple2.of(word, 1));
- }
- }
- })
- .keyBy(0)
- .timeWindow(Time.seconds(5))
- .sum(1);
- // 將結果打印到控制臺,注意這里使用的是單線程打印,而非多線程
- windowCounts.print().setParallelism(1);
- env.execute("Socket Window WordCount");
- }
- }
運行程序
要運行示例程序,首先我們在終端啟動 netcat 獲得輸入流:
- nc -lk 9000
如果是 Windows 平臺,可以通過 https://nmap.org/ncat/ 安裝 ncat 然后運行:
- ncat -lk 9000
然后直接運行SocketWindowWordCount的 main 方法。
只需要在 netcat 控制臺輸入單詞,就能在 SocketWindowWordCount 的輸出控制臺看到每個單詞的詞頻統計。如果想看到大于1的計數,請在5秒內反復鍵入相同的單詞。





























