精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

一份不可多得的數據科學與機器學習Python庫

原創
人工智能 機器學習 大數據
本文全面地介紹了當前市場上適合于數據科學和機器學習的優秀 Python 庫。

【51CTO.com原創稿件】本文全面地介紹了當前市場上適合于數據科學和機器學習的優秀 Python 庫。

[[281799]]

 

圖片來自 Pexels

根據當前技術界的廣泛需求,本文將以如下順序重點介紹,市場上適合于數據科學和機器學習實現的優秀 Python 軟件:

  • 數據科學與機器學習的介紹
  • 為什么要使用 Python 進行數據科學和機器學習?
  • 用于數據科學和機器學習的 Python 庫

[[281800]]

 

數據科學與機器學習的介紹

眾所周知,我們正處在一個大數據的時代,數據是驅動機器模型發展的“燃料”。

實際上,數據科學和機器學習都屬于技能范疇,而不僅僅是兩項孤立的技術。

它們需要開發人員在技能上具備:從數據中獲得實用的見解,通過建立預測模型,進而解決問題的能力。

就字面定義而言:

  • 數據科學,是從數據中提取有用信息,以解決實際問題的過程。
  • 機器學習,是如何通過所提供的大量數據,來解決問題的過程。

那么兩者之間的關系可以被描述為:機器學習是數據科學的一部分,它利用機器學習算法和其他統計學技術,來獲悉數據是如何影響并發展業務的。

為什么要使用 Python 進行數據科學和機器學習?

Python 在那些用于實現機器學習和數據科學的流行編程語言中排名第一。這是為什么呢?

 

①易于學習:Python 使用的是非常簡單的語法,可被用于實現簡單的計算。

例如:將兩個字符串添加到復雜的計算過程中,以構建出復雜的機器學習模型。

②更少的代碼:雖然為了實現數據科學和機器學習會涉及到許多種的算法,但是得益于 Python 對于預定義包的支持,我們不必從零開始編寫算法。

同時,為了簡單化,Python 也提供了一種“在編碼時就進行檢查(check as you code)”的方法,進而有效地減輕了測試代碼的工作量。

③預建庫:Python 有著 100 多種預建庫,可用于實現各種機器學習和深度學習的算法。

因此,用戶每次在數據集上運行算法時,只需通過單個命令去安裝和加載必要的程序包即可。

其中,比較流行的預構建庫包括:NumPy、Keras、Tensorflow、以及 Pytorch 等。

④與平臺無關:Python 可以運行在包括:Windows、macOS、Linux、以及 Unix 等多種平臺上。

在將代碼從一個平臺轉移到另一個平臺時,您可以使用諸如 PyInstaller 之類的軟件包,來解決所有依賴性的問題。

⑤大量的社區支持:除了擁有大量的支持者,Python 還擁有多個社區與論壇,各類程序員可以在其中發布他們自己的錯誤,并互相提供幫助。

用于數據科學和機器學習的 Python 庫

Python 在人工智能(AI)和機器學習領域得到廣泛使用,其中一項重要的原因是:Python 提供了數千種內置庫。

通過各種內置的功能和方法,這些庫能夠輕松地進行數據分析、處理、整理、以及建模等任務。

下面我們將重點討論如下類型的任務庫:

  • 統計分析
  • 數據可視化
  • 數據建模與機器學習
  • 深度學習
  • 自然語言處理(NLP)

統計分析

統計是數據科學和機器學習的一項基礎。所有的機器學習和深度學習(DL)算法、及相關技術均基于統計學的基本原理和概念。而 Python 則專為統計分析提供了大量的軟件庫。

在此,我們將重點介紹那些能夠執行復雜統計計算極具推薦價值的軟件包與內置函數。

它們分別是:

  • NumPy
  • SciPy
  • Pandas
  • StatsModels

①NumPy

 

NumPy、或稱 Numerical Python 是最常用的 Python 庫之一。該庫的主要功能是:支持用于數學和邏輯運算的多維數組。

用戶可以將 NumPy 用于索引、分類、整形、傳輸圖像、以及聲波類型的多維實數數組。

下面是 NumPy 的具體功能列表:

執行從簡單到復雜的數學和科學計算。

對多維數組對象提供的強大支持,用于處理數組元素的函數和方法集合。

提供傅里葉變換和數據處理例程。

執行線性代數計算,這對于包括:線性回歸、邏輯回歸、樸素貝葉斯等機器學習算法,是十分必需的。

②SciPy

 

建立在 NumPy 之上的 SciPy 庫,是一組子軟件包集合。它能夠協助解決與統計分析有關的各種基本問題。

由于適用于處理使用了 NumPy 庫定義的數組元素,因此 SciPy 庫通常可被用于計算那些使用 NumPy,仍無法完成的數學方程式。

下面是 SciPy 的具體功能列表:

  • 通過與 NumPy 數組一起使用,它提供了一個數值積分和優化方法的平臺。
  • 它帶有可用于矢量量化、傅立葉變換、積分、插值等子軟件包的集合。
  • 提供了完整的線性代數函數堆棧。這些函數可使用諸如 k-means 算法,來進行聚類等高級計算。
  • 提供了對于信號處理、數據結構、數值算法、以及創建稀疏矩陣等方面的支持。

③Pandas

 

作為另一個重要的統計庫,Pandas 主要被用于統計、金融、經濟學、數據分析等廣泛的領域。

該軟件庫主要依賴 NumPy 數組,來處理 Pandas 的數據對象。畢竟,NumPy、Pandas 和 SciPy 在執行科學計算、以及數據處理等方面,有著深度的彼此依賴性。

下面是 Pandas 的具體功能列表:

  • 使用預定義和自定義的索引,來快速創建有效的 DataFrame 對象。
  • 可被用于處理大型數據集,并執行子集、數據切片、以及索引等操作。
  • 提供用于創建 Excel 圖表,和執行復雜數據分析任務的內置功能,例如:描述性的統計分析,數據整理、轉換、操作、以及可視化等。
  • 提供對于處理時序數據的支持。

我個人認為:Pandas 是處理大量數據方面的優秀軟件庫;NumPy 對于多維數組具有出色的支持;而 Scipy 則提供了一組針對執行大多數據統計分析任務的子軟件包。

④StatsModels

建立在 NumPy 和 SciPy 之上的 StatsModels Python 軟件包,是創建統計模型、數據處理和模型評估的最佳選擇。

除了使用到 SciPy 庫中的 NumPy 數組和科學模型之外,它還能夠與 Pandas 相集成,以實現有效的數據處理。StatsModels 比較擅長于統計計算、統計測試和數據探索。

下面是 StatsModels 的具體功能列表:

  • 彌補了 NumPy 和 SciPy 庫的缺陷,能夠執行統計檢驗和假設檢驗。
  • 提供了 R-style 公式的實現,以便更好地進行統計分析。統計人員可以沿用 R 語言。
  • 由于它能夠廣泛地支持統計計算,因此通常可用于實現廣義線性模型(GLM,Generalised Linear Models)和普通最小二階線性回歸(OLM,Ordinaryleast-square Linear Regression)模型。
  • 支持包括假設檢驗(零理論,Null Theory)在內的統計檢驗。

數據可視化

數據可視化就是通過圖形,來有效地表達來自數據的各種關鍵洞見。它包括:圖形、圖表、思維導圖、熱圖、直方圖、密度圖等形式,進而研究各種數據變量之間的相關性。

 

在此,我們將重點介紹那些可以通過內置函數,來研究各種數據之間依賴關系的 Python 數據可視化包。

它們分別是:

  • Matplotlib
  • Seaborn
  • Plotly
  • Bokeh

①Matplotlib

Matplotlib 是 Python 中最基本的數據可視化軟件包。它支持諸如:直方圖、條形圖、功率譜、誤差圖等各類圖形。

通過該二維圖形庫,用戶可以生成各種清晰明了的圖形,這對于探索性數據分析(EDA)是至關重要的。

下面是 Matplotlib 的具體功能列表:

  • 用戶可以針對 Matplotlib 選擇合適的線條樣式、字體樣式、格式化軸等功能,以便輕松地繪制出各種圖形。
  • 作為一種推理定量信息的工具,它可通過創建圖形,來協助用戶了解趨勢、模式并進行關聯。
  • 作為 Matplotlib 軟件包的最佳功能之一,其 Pyplot 模塊提供了與 MATLAB 非常相似的用戶界面。
  • 提供面向對象的 API 模塊,可通過諸如 Tkinter、wxPython、以及 Qt 等 GUI 工具,將圖形集成到應用程序中。

②Seaborn

 

雖然以 Matplotlib 庫為基礎,但是與 Matplotlib 相比,Seaborn 可用于創建更具吸引力和描述性的統計圖表。

除了對數據可視化提供廣泛的支持,Seaborn 還自帶有一種面向數據集的內置 API,可用于研究多個變量之間的關系。

下面是 Seaborn 的具體功能列表:

  • 可分析和可視化單變量和雙變量的數據點,提供了將當前數據與其他數據子集進行比較的選項。
  • 針對各種目標變量的線性回歸模型,支持自動化統計估計和圖形化表示。
  • 通過提供對于高級抽象功能的執行,可構建多圖網格(multi-plotgrids)的復雜可視化。
  • 通過各種內置主題,可實現樣式設置,并創建 Matplotlib 圖。

③Plotly

 

作為知名的圖形 Python 庫之一,Ploty 通過交互式圖形,以方便用戶了解目標變量和預測變量之間的依賴性。

它可以被用于分析與可視化統計,針對財務、商業和科學數據領域,生成清晰明了的圖形、子圖、熱圖、以及 3D 圖表等。

下面是 Ploty 的具體功能列表:

  • 具有 30 多種圖表類型,包括:3D 圖表、科學和統計圖、SVG 地圖等,可實現清晰的可視化。
  • 通過 Python API,您可以創建由圖表、圖形、文本和 Web 圖像組成的公共/私有的儀表板。
  • 可創建基于 JSON 格式序列化的可視化圖像,用戶可以在 R、MATLAB、Julia 等不同平臺上輕松地訪問到它們。
  • 通過名為 Plotly Grid 的內置 API,用戶可以直接將數據導入 Ploty 環境。

④Bokeh

 

Bokeh 是 Python 中交互性最強的庫之一,可用于為 Web 瀏覽器構建描述性的圖形表示形式。

它可以輕松處理龐大的數據集,并構建通用圖,進而有助于執行廣泛的 EDA。

通過定義完善的特征,Bokeh 能夠構建交互式的圖表、儀表板和數據應用程序。

下面是 Bokeh 的具體功能列表:

  • 可以通過簡單的命令,幫助用戶快速地創建復雜的統計圖。
  • 支持 HTML、Notebook、以及服務器形式的輸出。它還支持多種語言的綁定,包括 R、Python、lua、以及 Julia 等。
  • 通過與 Flask 和 Django 的集成,您可以在應用程序上表達特定的可視化效果。
  • 通過提供對于可視化文件的支持,用戶可以將其轉換為諸如 Matplotlib、Seaborn、以及 ggplot 等其他庫。

機器學習

創建可以準確預測的結果、并解決特定問題的機器學習模型,是任何數據科學項目中最重要的部分。

然而,實施機器學習與深度學習往往會涉及到數千行的代碼。而當您需要通過神經網絡解決復雜問題時,其對應的模型則會變得更加麻煩。

不過值得慶幸的是,通過 Python 自帶的多種軟件包,我們可以無需編寫任何算法,輕松地實現各種機器學習的技術應用。

 

在此,我們將重點介紹那些可以通過內置函數,來實現各種機器學習算法極具推薦價值的機器學習軟件包。

它們分別是:

  • Scikit-learn
  • XGBoost
  • ELI5

①Scikit-learn

 

作為數據建模和模型評估的 Python 庫之一,Scikit-learn 自帶了各種監督式和無監督式機器學習算法。

同時,它可以被用于集合式學習(Ensemble Learning)和促進式機器學習(Boosting Machine Learning)的明確定義。

下面是 Scikit 的具體功能列表:

通過提供標準的數據集(如:Iris 和 Boston House Price),以協助用戶開展機器學習。

可用于執行監督式和無監督式機器學習的內置方法,包括解析、聚類、分類、回歸、以及對各種文件進行異常檢測。

帶有用于特征提取和特征選擇的內置功能,可協助識別數據中的重要屬性。

通過執行交叉驗證,它提供了評估模型性能的不同方法,可優化模型的性能、并調整各項參數。

②XGBoost

 

XGBoost 即為“極端梯度增強(Extreme Gradient Boosting)”,它屬于 Boosting 機器學習類 Python 軟件包。通過梯度增強,XGBoost 能夠提高機器學習模型的性能和準確性。

下面是 XGBoost 的具體功能列表:

由于是用 C++ 編寫的,因此 XGBoost 被認為是提高機器學習模型性能最快、且有效的軟件庫之一。

由于 XGBoost 的核心算法是可并行化的,因此它可以有效地利用多核計算機的性能。同時,XGBoost 也可以處理大量數據集、并能夠跨多個數據集合開展網絡工作。

提供可用于執行交叉驗證,參數調整,正則化,以及處理缺失值的內部參數,還能夠提供與 Scikit-learn 相兼容的 API。

由于 XGBoost 經常被用于頂級的數據科學和機器學習競賽中,因此被普遍認為優于其他算法。

③ELI5

作為另一種 Python 庫,ELI5 主要致力于改善機器學習模型的性能。由于相對較新,因此它通常會與 XGBoost、LightGBM、以及 CatBoost 等一起被使用,進而提高機器學習模型的準確性。

下面是 ELI5 的具體功能列表:

  • 提供與 Scikit-learn 軟件包的集成,以表征特征的重要性,并解釋決策樹和基于樹的集成性預測。
  • 能夠分析并解釋由 XGBClassifier、XGBRegressor、LGBMClassifier、LGBMRegressor、CatBoostClassifier、CatBoostRegressor 和 Catboost 所做出的預測。
  • 提供了對實現多種算法的支持,并能夠檢查黑盒模型。其 TextExplainer 模塊可以解釋由文本分類器所做出的預測。
  • 能夠協助分析那些由線性回歸器、和分類器給出的 Scikit 學習通用線性模型(GLM,General Linear Models)的權重和預測。

深度學習

機器學習和人工智能的進化離不開深度學習。隨著深度學習的引入,我們可以構建出復雜的模型,并處理龐大的數據集。

有了 Python 提供的各種深度學習軟件包,我們可以輕松地構建出各種高效的神經網絡。

 

在此,我們將重點介紹那些可以通過內置函數,來實現復雜神經網絡極具推薦價值的深度學習軟件包。

它們分別是:

  • TensorFlow
  • Pytorch
  • Keras

①TensorFlow

 

作為深度學習的 Python 庫之一,TensorFlow 是一款可用于橫跨各項任務進行數據流編程的開源庫。

TensorFlow 通過一個符號數學庫,來構建出強大而精確的神經網絡。它提供了直觀的多平臺編程界面,可在不同的領域中實現高度擴展性。

下面是 TensorFlow 的具體功能列表:

  • 面對大型項目和數據集合,它可以構建和訓練多個神經網絡。
  • 除支持神經網絡,它還提供了各種執行統計分析的功能與方法。例如:它自帶有可用于創建概率模型和貝葉斯網絡(包括:Bernoulli、Chi2、Uniform、Gamma 等)的內置功能。
  • TensorFlow 提供了分層的組件,這些組件可以對權重和偏差執行分層的操作,并且可以通過實施正則化技術(例如:batch normalization、Dropout 等)來提高模型的性能。
  • 它自帶有一個被稱為 TensorBoard 的可視化程序,該可視化程序能夠創建交互式和可視化的圖形,以獲悉數據特征的依賴性。

②Pytorch

 

Pytorch 是一個基于 Python 的開源科學計算軟件包,可用于在大型的數據集上實施深度學習技術和神經網絡。

Facebook 使用此軟件庫來開發其神經網絡,進而實現了面部識別和自動化標記等任務。

下面是 Pytorch 的具體功能列表:

  • 提供了易用的 API,能與其他數據科學和機器學習的框架相集成。
  • 類似于 NumPy,Pytorch 提供了被稱為 Tensors 的多維數組,并且可以被使用在 GPU 上。
  • 它不僅可以用于針對大型神經網絡進行建模,而且還提供了一個界面,支持多達 200 多種能被用于統計分析的數學運算。
  • 其代碼可執行在每個節點上,以創建動態計算圖,進而協助時序分析,并能夠實時地預測銷售量。

③Keras

 

同樣作為 Python 中優秀的深度學習庫之一,Keras 能夠為構建、分析、評估和改進神經網絡提供全面支持。

Keras 是基于 Theano 和 TensorFlow Python 庫構建的。它提供了用于構建復雜的大規模深度學習模型所需的各種附加功能。

下面是 Keras 的具體功能列表:

  • 為構建所有類型的神經網絡提供支持,包括:完全連接、卷積、池化、循環、以及嵌入等。能夠針對大型數據集與問題,通過將各種模型進一步組合,以創建完整的神經網絡。
  • 具有執行神經網絡計算的內置功能,包括:定義層與目標,激活功能;能夠通過優化器和大量的工具,來輕松地處理圖像和文本數據。
  • 自帶有一些預處理的數據集和經過訓練的模型,包括:MNIST、VGG、Inception、SqueezeNet、以及 ResNet 等。
  • 易于擴展,能夠對新增功能和方法等模塊提供支持。

自然語言處理

Google 運用 Alexa 來準確地預測用戶搜索的內容,而在 Siri 等其他聊天機器人的背后都會用到自然語言處理(NLP)技術。

NLP 在設計 AI 的系統中,發揮了巨大的作用。該系統有助于描述出人類語言與計算機之間的交互關系。

 

在此,我們將重點介紹那些可以通過內置函數,來實現高級 AI 系統極具推薦價值的自然語言處理包。

它們分別是:

  • NLTK
  • spaCy
  • Gensim

①NLTK(自然語言工具包,Natural Language ToolKit)

 

NLTK 被認為是分析人類語言和行為的優秀 Python 軟件包。作為大多數數據科學家的首選,NLTK 庫提供了易用的界面,其中包含 50 多種語料庫和詞匯資源,有助于描述人與人之間的互動,以及構建出諸如推薦引擎之類的 AI 系統。

下面是 NLTK 的具體功能列表:

  • 提供了一整套數據和文本處理的方法,可用于針對文本分析的分類、標記、詞干、解析和語義推理。
  • 包含了用于工業級 NLP 庫的包裝器,通過構建復雜的系統,以協助進行文本分類,并查找人類語音的行為趨勢和模式。
  • 它自帶有實現計算語言學(Computational Linguistics)的綜合指南、以及完整的 API 文檔指南,可幫助新手程序員上手使用 NLP。
  • 它擁有龐大的用戶和專業人員社區,能夠提供全面的教程與快速指南,方便用戶學習如何使用 Python 進行計算語言學。

②spaCy

 

作為一款免費的 Python 開源庫,spaCy 可被用于實現高級自然語言處理(NLP)的相關技術。

當您在處理大量文本時,可以通過 spaCy 來輕松地獲悉文本的形態學意義,以及如何將其分類成為人類可理解的語言。

下面是 spaCy 的具體功能列表:

  • 除了語言計算之外,spaCy 還提供了單獨的模塊,可用來構建、訓練和測試各種統計模型,進而更好地協助用戶理解單詞的含義。
  • 它帶有各種內置的語言注釋,可協助分析句子的語法結構。這不僅有助于理解各種測試,還有助于查找出句子中不同單詞之間的關系。
  • 可被用于針對包含縮寫和多個標點符號的復雜嵌套標記(nestedtokens),以實現標記化。
  • 除了本身的強大功能和效率,spaCy 還支持 51 種以上的語言。

③Gensim

 

Gensim 是另一種開源的 Python 軟件包,該建模旨在從大型文檔和文本中提取語義主題,以通過統計模型和語言計算來予以處理,進而分析和預測人類行為。

無論是原始數據還是非結構化的數據,它都有能力處理和應對龐大的數據集合。

下面是 Genism 的具體功能列表:

  • 通過理解每個單詞的統計語義,以構建有效的分類文檔模型。
  • 它自帶有諸如 Word2Vec、FastText、潛在語義分析(Latent Semantic Analysis)之類的文本處理算法。
  • 這些算法能夠研究文檔中的統計共現模式,通過過濾掉那些不必要的單詞,進而構建出僅有重要特征的模型。
  • 提供可供導入、并支持多種數據格式的 I/O 包裝器與讀取器。
  • 其簡單直觀的界面,可供初學者輕松地進行試用。同時,其 API 學習曲線比較平緩,因此備受各界開發人員的喜歡。

【51CTO原創稿件,合作站點轉載請注明原文作者和出處為51CTO.com】

 

責任編輯:武曉燕 來源: 51CTO技術棧
相關推薦

2022-02-21 16:11:16

TypeScript構造函數

2017-10-30 09:53:05

深度學習技巧指南

2020-10-11 21:52:10

數據AI指南

2017-11-02 14:20:44

數據科學簡歷數據科學家

2020-01-02 14:13:01

機器學習模型部署預測

2019-01-02 07:43:51

機器學習人工智能學歷

2018-05-22 09:07:54

數據科學語言職位

2018-08-15 13:49:06

數據分析學習Python

2018-08-09 22:20:05

數據科學Python工作

2021-02-22 10:59:43

人工智能機器學習深度學習

2019-05-28 06:00:35

華為開發者5G

2023-05-16 08:31:04

2017-03-16 14:01:00

2019-07-17 07:07:54

MySQL數據庫索引

2018-04-23 14:01:04

數據科學機器學習開發

2018-04-19 08:10:09

機器學習數據科學面試題

2024-02-26 00:06:00

排序學習算法斯奇拉姆

2018-05-03 06:49:51

2018-01-29 16:29:35

數據開發從業

2019-11-14 21:21:50

數據挖掘數據處理數據分析
點贊
收藏

51CTO技術棧公眾號

亚洲va国产va天堂va久久| 亚洲人成网站999久久久综合| 中文字幕精品在线播放| 亚洲精品久久久久久久久久 | 精品夜色国产国偷在线| 青青草精品视频在线观看| 黄色动漫在线| 91美女片黄在线| 成人动漫网站在线观看| 国产精品7777| 天天天综合网| 亚洲欧美福利视频| 在线免费黄色小视频| 亚洲天堂资源| 亚洲欧美福利一区二区| 久久精品二区| 亚洲乱熟女一区二区| 蜜臀av性久久久久蜜臀aⅴ四虎| 久久亚洲国产精品| 99久久精品免费视频| 国产精品极品在线观看| 91精品在线麻豆| 国产一级不卡毛片| 日韩免费av片| 小早川怜子影音先锋在线观看| 国产精品欧美久久久久无广告| 国产三区精品| 国产成人精品一区二区无码呦| 久久国产日本精品| 国内精品久久久久久久| 国产成人av免费在线观看| 亚洲伦理网站| 色婷婷一区二区三区四区| 青青草视频国产| 免费在线看黄网站| 欧美国产精品一区二区| 久久综合久久久| 五月婷婷丁香花| 成人午夜免费视频| 97久草视频| 国产手机av在线| 久久电影国产免费久久电影 | 国产卡一卡二在线| 成年人视频在线观看免费| www成人在线观看| 精品国产乱码久久久久| 成人免费观看在线视频| 国产精品亚洲专一区二区三区| 成人激情免费在线| 亚洲系列在线观看| 精品亚洲porn| 欧美精品www在线观看| 白嫩情侣偷拍呻吟刺激| 欧美第一在线视频| 日韩色视频在线观看| 天美一区二区三区| gogo大尺度成人免费视频| 欧美人妇做爰xxxⅹ性高电影 | 一区二区三区四区欧美| eeuss影院www在线观看| 中文字幕av免费专区久久| 日韩影视精品| 国产欧美黑人| 一级特黄大欧美久久久| 中文字幕人妻熟女人妻洋洋| 日韩123区| 午夜精品一区二区三区免费视频| 人妻无码久久一区二区三区免费| 日韩伦理精品| 欧美性受xxxx黑人xyx| 高潮一区二区三区| 亚洲精品自拍| 亚洲精品在线免费播放| v天堂中文在线| 国产精品一区二区99| 色婷婷成人综合| 久久精品www人人爽人人| 激情文学一区| 国产99视频在线观看| 亚洲一级片免费看| 国产精品一区在线观看你懂的| 国产精品中文字幕在线观看| 国产xxxx在线观看| 成人av资源站| 视频三区二区一区| 超鹏97在线| 欧美丝袜第一区| 日本超碰在线观看| 超碰精品在线观看| 亚洲图片欧洲图片av| 国产精品一区二区亚洲| 黑丝一区二区| 国产精品久久久久久久久| 精品国产乱码久久久久久鸭王1| 国自产拍偷拍福利精品免费一| 91国内在线视频| 怡红院成永久免费人全部视频| 国产成人小视频| 三区精品视频| 自由的xxxx在线视频| 色综合久久综合网| 五月天国产视频| 国产在线播放精品| 三级精品视频久久久久| 日韩精品成人在线| 精品在线免费观看| 精品无码久久久久国产| 欧美r级在线| 色综合亚洲欧洲| 爱情岛论坛亚洲自拍| 国产精品亚洲片在线播放| 欧美成年人在线观看| 无码人妻丰满熟妇精品| 国产成人精品一区二| 视频一区二区在线观看| 97超碰免费在线| 亚洲h在线观看| 91丝袜超薄交口足| 国产一区二区欧美| 久久久视频在线| 一级特黄色大片| 国产色一区二区| 97中文字幕在线| 国产日韩欧美中文在线| 日韩一区二区精品视频| 天堂av免费在线观看| 91首页免费视频| 国内精品视频一区二区三区| 国产精品久一| 美女性感视频久久久| 在线视频 91| 中文字幕欧美日韩一区| 欧美成人精品欧美一级乱| 黄色欧美在线| 久久久久在线观看| 亚洲国产视频一区二区三区| 亚洲视频在线观看三级| 免费观看成人在线视频| 婷婷精品在线| 51视频国产精品一区二区| 女人18毛片水真多18精品| 亚洲欧美另类图片小说| 中文字幕一区二区三区四| 国产精品成人a在线观看| 国产精品久久久久久久av大片| 国产福利免费在线观看| 成人免费一区二区三区视频| 裸体大乳女做爰69| 巨大黑人极品videos精品| 国产亚洲欧洲高清一区| 波多野结衣在线电影| 久久精品人人做人人爽人人| 乱子伦视频在线看| 国产va免费精品观看精品视频| 国产成人精品在线| 福利小视频在线观看| 欧美午夜精品久久久久久孕妇 | av噜噜在线观看| 三区四区不卡| 91夜夜揉人人捏人人添红杏| 超碰在线caoporen| 精品国偷自产国产一区| 日本午夜小视频| 99久久99久久免费精品蜜臀| 亚洲 欧美 日韩 国产综合 在线| 色综合久久中文| 国产精品96久久久久久| 日本福利专区在线观看| 五月天一区二区三区| 亚洲中文字幕无码av| 国产伦精品一区二区三区视频 | 一区二区三区亚洲视频| 亚洲乱码国产乱码精品精98午夜| ass极品水嫩小美女ass| 99国产成+人+综合+亚洲欧美| 国产美女精品视频| 麻豆视频在线观看免费| 日韩欧美精品三级| 国产做受高潮漫动| 国产三级一区二区| 久久久精品视频国产| 亚洲国产美女| 亚洲成人第一| 亚洲精品a区| 欧美成人网在线| 五月天婷婷在线观看| 欧美日韩精品三区| 精品无码久久久久| 国产日产欧美一区| 日韩黄色一区二区| 丝袜亚洲另类欧美综合| 亚洲天堂第一区| 亚洲自拍都市欧美小说| 91牛牛免费视频| 国产精品伦理| 久久99亚洲热视| 97久久人国产精品婷婷| 国产亚洲制服色| 佐山爱在线视频| 老牛嫩草一区二区三区日本 | 在线免费高清一区二区三区| 日韩免费av一区二区三区| 亚洲精品高潮| 国产欧美精品一区二区三区-老狼| 欧美黄色视屏| 日韩在线观看网址| 日韩一区二区三区中文字幕| 91麻豆精品国产自产在线| 中文在线第一页| 久久综合九色综合欧美就去吻| 成人免费在线观看视频网站| 欧美精美视频| 国产精品美女久久久久av福利| av免费在线免费| 亚洲人成在线播放| 欧美视频在线观看一区二区三区| 欧美日韩国产123区| 黄色在线视频网址| 午夜影视日本亚洲欧洲精品| 天天看天天摸天天操| 国产调教视频一区| 日韩精品视频一区二区| 国产一区二区0| 欧美美女一级片| 日韩电影免费在线看| 内射国产内射夫妻免费频道| 激情六月综合| 国产www免费| 欧美日韩日本国产亚洲在线| 欧美性视频在线播放| 精品久久久久久久| 欧洲一区二区在线观看| 中国av一区| 麻豆久久久av免费| 青青视频一区二区| 国产精品久久久久免费| 日本少妇精品亚洲第一区| 成人国产精品一区二区| 久久久精品一区二区毛片免费看| 国产aⅴ夜夜欢一区二区三区| 亚洲天堂电影| 66m—66摸成人免费视频| 爱看av在线入口| 一区国产精品视频| 黄色网址在线播放| 亚洲美女av网站| 美国成人毛片| 一区二区三区视频在线| 丁香婷婷在线| 国产亚洲欧美aaaa| 素人av在线| 久久影院中文字幕| av网站大全在线| 九九久久精品一区| 日韩电影免费观看| 久久久久久久亚洲精品| av资源网在线播放| 57pao成人国产永久免费| 高清不卡亚洲| 国产精品日韩欧美大师| 欧美日韩色网| 久久久噜噜噜久久久| 川上优av中文字幕一区二区| 456国产精品| 韩国成人在线| 成人网在线视频| 91麻豆精品激情在线观看最新 | 青青草原国产在线| 久久久久久国产精品久久| 美女视频在线免费| 国产999精品| va天堂va亚洲va影视| 97人人模人人爽人人少妇| 久久久久97| 日韩在线第一区| 欧美日韩国产亚洲一区| 亚洲 高清 成人 动漫| 日韩精品久久理论片| 亚洲欧美日韩综合网| 国产精品亚洲专一区二区三区| 亚洲调教欧美在线| 日本一区二区综合亚洲| 欧美日韩亚洲国产另类| 欧美性猛交xxxx免费看| 91av久久久| 亚洲福利影片在线| 精品乱子伦一区二区| 亚洲精品电影在线观看| aaa在线免费观看| 亚洲摸下面视频| 色的视频在线免费看| 久久久欧美精品| 欧美亚洲黄色| 久久国产精品免费一区| 久久国产成人精品| 免费av手机在线观看| 免费在线一区观看| av在线播放网址| 亚洲欧美在线视频观看| 亚洲伊人成人网| 欧美一级艳片视频免费观看| 男女网站在线观看| 欧美激情欧美狂野欧美精品| 日韩高清成人| 国产免费亚洲高清| 免费看久久久| 永久免费看av| 美女视频第一区二区三区免费观看网站| 日韩黄色一区二区| 国产精品初高中害羞小美女文| wwwxxx亚洲| 精品国产免费视频| 婷婷视频在线| 国产成+人+综合+亚洲欧美丁香花| 中文字幕日韩在线| 免费看av软件| 蜜臀a∨国产成人精品| 国产男女猛烈无遮挡a片漫画| 99精品久久久久久| 高h视频免费观看| 欧美吞精做爰啪啪高潮| 三级在线观看| 国内精品小视频| 天堂精品久久久久| 制服国产精品| 国产一区视频在线观看免费| 鲁一鲁一鲁一鲁一av| 久久久天堂av| 亚洲国产成人无码av在线| 亚洲成人999| 神马午夜伦理不卡| 97免费高清电视剧观看| 五月天久久777| 中文字幕一区二区在线观看视频 | 欧美黄色免费观看| 91精品国产乱| 成视频免费观看在线看| 国产日韩欧美影视| 国产精品一区免费在线| 性欧美.com| 麻豆91精品91久久久的内涵| 91精品国自产在线| 欧美三级三级三级| jzzjzzjzz亚洲成熟少妇| 国产精品久久国产精品99gif| 国产欧美一区二区三区精品观看| caopor在线视频| 国产日韩精品一区二区浪潮av| 成人毛片一区二区三区| 一本色道久久综合狠狠躁篇的优点 | 欧美男男同志| 日韩av第一页| 欧美日韩在线二区| 婷婷免费在线观看| 1024精品合集| 亚洲av综合色区无码一二三区| 欧美黄色片在线观看| 国内精品偷拍| 欧美 日韩精品| 中文幕一区二区三区久久蜜桃| 在线观看一二三区| 久色乳综合思思在线视频| 国产日韩在线观看视频| av在线观看地址| 久久日韩精品一区二区五区| 正在播放亚洲精品| 久久精品这里热有精品| 色悠久久久久综合先锋影音下载 | 日本vs亚洲vs韩国一区三区二区| 少妇太紧太爽又黄又硬又爽小说 | 国模视频一区二区三区| 美女一区二区在线观看| 国产免费一区二区三区视频| 国产视频视频一区| 99久久精品无免国产免费| 性色av一区二区三区红粉影视| 宅男在线一区| 涩多多在线观看| 欧美日韩性视频| 午夜在线小视频| 精品免费国产| 麻豆91在线播放免费| 久久精品国产亚洲av香蕉| 亚洲免费电影在线观看| 婷婷丁香久久| 内射国产内射夫妻免费频道| 国产精品高潮呻吟| 性欧美一区二区三区| 日本免费一区二区三区视频观看| 91视频综合| 999在线免费视频| 日韩美女久久久| 四虎影视在线播放| 午夜精品久久久久久久白皮肤| 国产精品欧美三级在线观看| 91香蕉视频在线观看视频| 欧美性xxxxxxxxx| 久久99久久99精品| 激情欧美日韩| 日本不卡一区视频|