Apache Spark源碼走讀之3:Task運行期之函數調用
準備
-
spark已經安裝完畢
-
spark運行在local mode或local-cluster mode
local-cluster mode
local-cluster模式也稱為偽分布式,可以使用如下指令運行
- MASTER=local[1,2,1024] bin/spark-shell
[1,2,1024] 分別表示,executor number, core number和內存大小,其中內存大小不應小于默認的512M
Driver Programme的初始化過程分析
初始化過程的涉及的主要源文件
-
SparkContext.scala 整個初始化過程的入口
-
SparkEnv.scala 創建BlockManager, MapOutputTrackerMaster, ConnectionManager, CacheManager
-
DAGScheduler.scala 任務提交的入口,即將Job劃分成各個stage的關鍵
-
TaskSchedulerImpl.scala 決定每個stage可以運行幾個task,每個task分別在哪個executor上運行
-
SchedulerBackend
-
最簡單的單機運行模式的話,看LocalBackend.scala
-
如果是集群模式,看源文件SparkDeploySchedulerBackend
-
初始化過程步驟詳解
步驟1: 根據初始化入參生成SparkConf,再根據SparkConf來創建SparkEnv, SparkEnv中主要包含以下關鍵性組件 1. BlockManager 2. MapOutputTracker 3. ShuffleFetcher 4. ConnectionManager
- private[spark] val env = SparkEnv.create(
- conf,
- "", conf.get("spark.driver.host"), conf.get("spark.driver.port").toInt, isDriver = true,
- isLocalisLocal = isLocal)
- SparkEnv.set(env)
步驟2:創建TaskScheduler,根據Spark的運行模式來選擇相應的SchedulerBackend,同時啟動taskscheduler,這一步至為關鍵
- private[spark] var taskScheduler = SparkContext.createTaskScheduler(this, master, appName)
- taskScheduler.start()
TaskScheduler.start目的是啟動相應的SchedulerBackend,并啟動定時器進行檢測
- override def start() {
- backend.start()
- if (!isLocal && conf.getBoolean("spark.speculation", false)) { logInfo("Starting speculative execution thread") import sc.env.actorSystem.dispatcher
- sc.env.actorSystem.scheduler.schedule(SPECULATION_INTERVAL milliseconds,
- SPECULATION_INTERVAL milliseconds) {
- checkSpeculatableTasks()
- }
- }
- }
步驟3:以上一步中創建的TaskScheduler實例為入參創建DAGScheduler并啟動運行
- @volatile private[spark] var dagScheduler = new DAGScheduler(taskScheduler)
- dagScheduler.start()
步驟4:啟動WEB UI
- ui.start()
RDD的轉換過程
還是以最簡單的wordcount為例說明rdd的轉換過程
- sc.textFile("README.md").flatMap(line=>line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)
上述一行簡短的代碼其實發生了很復雜的RDD轉換,下面仔細解釋每一步的轉換過程和轉換結果
步驟1:val rawFile = sc.textFile("README.md")
textFile先是生成hadoopRDD,然后再通過map操作生成MappedRDD,如果在spark-shell中執行上述語句,得到的結果可以證明所做的分析
- scala> sc.textFile("README.md") 14/04/23 13:11:48 WARN SizeEstimator: Failed to check whether UseCompressedOops is set;
- assuming yes 14/04/23 13:11:48 INFO MemoryStore: ensureFreeSpace(119741) called with curMem=0, maxMem=311387750 14/04/23 13:11:48 INFO MemoryStore:
- Block broadcast_0 stored as values to memory (estimated size 116.9 KB, free 296.8 MB) 14/04/23 13:11:48 DEBUG BlockManager:
- Put block broadcast_0 locally took 277 ms 14/04/23 13:11:48 DEBUG BlockManager: Put for block broadcast_0 without replication took 281 ms res0:
- org.apache.spark.rdd.RDD[String] = MappedRDD[1] at textFile at :13
步驟2: val splittedText = rawFile.flatMap(line => line.split(" "))
flatMap將原來的MappedRDD轉換成為FlatMappedRDD
- def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] =
- new FlatMappedRDD(this, sc.clean(f))
步驟3:val wordCount = splittedText.map(word => (word, 1))
利用word生成相應的鍵值對,上一步的FlatMappedRDD被轉換成為MappedRDD
步驟4:val reduceJob = wordCount.reduceByKey(_ + _),這一步最復雜
步驟2,3中使用到的operation全部定義在RDD.scala中,而這里使用到的reduceByKey卻在RDD.scala中見不到蹤跡。reduceByKey的定義出現在源文件PairRDDFunctions.scala
細心的你一定會問reduceByKey不是MappedRDD的屬性和方法啊,怎么能被MappedRDD調用呢?其實這背后發生了一個隱式的轉換,該轉換將MappedRDD轉換成為PairRDDFunctions
- implicit def rddToPairRDDFunctions[K: ClassTag, V: ClassTag](rdd: RDD[(K, V)]) =
- new PairRDDFunctions(rdd)
這種隱式的轉換是scala的一個語法特征,如果想知道的更多,請用關鍵字"scala implicit method"進行查詢,會有不少的文章對此進行詳盡的介紹。
接下來再看一看reduceByKey的定義
- def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {
- reduceByKey(defaultPartitioner(self), func)
- }
- def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = {
- combineByKey[V]((v: V) => v, func, func, partitioner)
- }
- def combineByKey[C](createCombiner: V => C,
- mergeValue: (C, V) => C,
- mergeCombiners: (C, C) => C,
- partitioner: Partitioner,
- mapSideCombine: Boolean = true,
- serializerClass: String = null): RDD[(K, C)] = {
- if (getKeyClass().isArray) {
- if (mapSideCombine) {
- throw new SparkException("Cannot use map-side combining with array keys.") } if (partitioner.isInstanceOf[HashPartitioner])
- { throw new SparkException("Default partitioner cannot partition array keys.") } } val aggregator = new Aggregator[K, V, C](createCombiner, mergeValue, mergeCombiners)
- if (self.partitioner == Some(partitioner)) { self.mapPartitionsWithContext((context, iter) =>
- { new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context)) }, preservesPartitioning = true) }
- else if (mapSideCombine)
- { val combined = self.mapPartitionsWithContext((context, iter) =>
- { aggregator.combineValuesByKey(iter, context) }, preservesPartitioning = true) val partitioned = new ShuffledRDD[K, C, (K, C)](combined, partitioner) .setSerializer(serializerClass) partitioned.mapPartitionsWithContext((context, iter) =>
- { new InterruptibleIterator(context, aggregator.combineCombinersByKey(iter, context)) }, preservesPartitioning = true) }
- else { // Don't apply map-side combiner. val values = new ShuffledRDD[K, V, (K, V)](self, partitioner).setSerializer(serializerClass) values.mapPartitionsWithContext((context, iter) =>
- { new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context)) }, preservesPartitioning = true)
- }
- }
reduceByKey最終會調用combineByKey, 在這個函數中PairedRDDFunctions會被轉換成為ShuffleRDD,當調用mapPartitionsWithContext之后,shuffleRDD被轉換成為MapPartitionsRDD
Log輸出能證明我們的分析
- res1: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[8] at reduceByKey at :13
RDD轉換小結
小結一下整個RDD轉換過程
HadoopRDD->MappedRDD->FlatMappedRDD->MappedRDD->PairRDDFunctions->ShuffleRDD->MapPartitionsRDD
整個轉換過程好長啊,這一切的轉換都發生在任務提交之前。
運行過程分析
數據集操作分類
在對任務運行過程中的函數調用關系進行分析之前,我們也來探討一個偏理論的東西,作用于RDD之上的Transformantion為什么會是這個樣子?
對這個問題的解答和數學搭上關系了,從理論抽象的角度來說,任務處理都可歸結為“input->processing->output"。input和output對應于數據集dataset.
在此基礎上作一下簡單的分類
-
one-one 一個dataset在轉換之后還是一個dataset,而且dataset的size不變,如map
-
one-one 一個dataset在轉換之后還是一個dataset,但size發生更改,這種更改有兩種可能:擴大或縮小,如flatMap是size增大的操作,而subtract是size變小的操作
-
many-one 多個dataset合并為一個dataset,如combine, join
-
one-many 一個dataset分裂為多個dataset, 如groupBy
Task運行期的函數調用
task的提交過程參考本系列中的第二篇文章。本節主要講解當task在運行期間是如何一步步調用到作用于RDD上的各個operation
TaskRunner.run
Task.run
Task.runTask (Task是一個基類,有兩個子類,分別為ShuffleMapTask和ResultTask)
RDD.iterator
RDD.computeOrReadCheckpoint
RDD.compute
或許當看到RDD.compute函數定義時,還是覺著f沒有被調用,以MappedRDD的compute定義為例
- override def compute(split: Partition, context: TaskContext) =
- firstParent[T].iterator(split, context).map(f)
注意,這里最容易產生錯覺的地方就是map函數,這里的map不是RDD中的map,而是scala中定義的iterator的成員函數map, 請自行參考http://www.scala-lang.org/api/2.10.4/index.html#scala.collection.Iterator
堆棧輸出
- 80 at org.apache.spark.rdd.HadoopRDD.getJobConf(HadoopRDD.scala:111)
- 81 at org.apache.spark.rdd.HadoopRDD$$anon$1.(HadoopRDD.scala:154)
- 82 at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:149)
- 83 at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:64)
- 84 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241)
- 85 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232)
- 86 at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
- 87 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241)
- 88 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232)
- 89 at org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33)
- 90 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241)
- 91 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232)
- 92 at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
- 93 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241)
- 94 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232)
- 95 at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:34)
- 96 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241)
- 97 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232)
- 98 at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161)
- 99 at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102)
- 100 at org.apache.spark.scheduler.Task.run(Task.scala:53)
- 101 at org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:211)
ResultTask
compute的計算過程對于ShuffleMapTask比較復雜,繞的圈圈比較多,對于ResultTask就直接許多。
- override def runTask(context: TaskContext): U = {
- metrics = Some(context.taskMetrics)
- try {
- func(context, rdd.iterator(split, context))
- } finally {
- context.executeOnCompleteCallbacks()
- }
- }
計算結果的傳遞
上面的分析知道,wordcount這個job在最終提交之后,被DAGScheduler分為兩個stage,***個Stage是shuffleMapTask,第二個Stage是ResultTask.
那么ShuffleMapTask的計算結果是如何被ResultTask取得的呢?這個過程簡述如下
-
ShffuleMapTask將計算的狀態(注意不是具體的數據)包裝為MapStatus返回給DAGScheduler
-
DAGScheduler將MapStatus保存到MapOutputTrackerMaster中
-
ResultTask在執行到ShuffleRDD時會調用BlockStoreShuffleFetcher的fetch方法去獲取數據
-
***件事就是咨詢MapOutputTrackerMaster所要取的數據的location
-
根據返回的結果調用BlockManager.getMultiple獲取真正的數據
-
BlockStoreShuffleFetcher的fetch函數偽碼
- val blockManager = SparkEnv.get.blockManager
- val startTime = System.currentTimeMillis
- val statuses = SparkEnv.get.mapOutputTracker.getServerStatuses(shuffleId, reduceId)
- logDebug("Fetching map output location for shuffle %d, reduce %d took %d ms".format( shuffleId, reduceId, System.currentTimeMillis - startTime))
- val blockFetcherItr = blockManager.getMultiple(blocksByAddress, serializer) val itr = blockFetcherItr.flatMap(unpackBlock)
注意上述代碼中的getServerStatuses及getMultiple,一個是詢問數據的位置,一個是去獲取真正的數據。
有關Shuffle的詳細解釋,請參考”詳細探究Spark的shuffle實現一文" http://jerryshao.me/architecture/2014/01/04/spark-shuffle-detail-investigation/
原文鏈接:http://www.cnblogs.com/hseagle/p/3673132.html






















